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Abstract

The field of machine learning based electroencephalogram (EEG) classification has received increasing
attention in research in recent years. However, the limited amount of available training data especially
restricts the use of deep learning based models in real-world applications of brain-computer interface
(BCI) systems, which allow humans to control or communicate with devices only by their brain activity.
One method of addressing data scarcity, known as data augmentation, is to increase the amount of
available data and its diversity by applying realistic transformations to the original data set to obtain
new samples. The impact of transformation-based augmentation techniques in different experimental
settings, however, is often still unknown. Therefore, this project compares three different augmentation
methods, namely Channels Dropout (CD), FT Surrogate (FTS) and Smooth Time Mask (STM), applied
to two Motor Imagery (MI) data sets in experiments based on single and multi-person data. The relative
change in classification accuracy compared to self-conducted baseline experiments was evaluated with
a shallow and a deep Convolutional Neural Network (CNN) as well as with a Support Vector Machine
(SVM). For the different combinations of experimental scenarios, the methods show diverging levels of
classification performance. Achieved accuracy gains of 8.56% with STM and 7.6% with FTS contrast
with a decline in accuracy of the same methods in slightly different scenarios such as changing the
depth of the CNN. Nevertheless, tendencies to reduce overfitting or to narrow differences in performance
between subjects could be observed. Eventually, based on the results obtained, improvements to the
current experiments such as additional preprocessing to further reduce the variance between subjects
are discussed and prioritised for future work.
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Chapter 1

Introduction

1.1 Problem Statements

The analysis of brain activity encounters numerous applications within and outside the clinical domain [1].
A very popular method of recording brain dynamics is to measure the electrical activity of the brain
using electrodes placed on the scalp, which is called electroencephalography (EEG) [2]. The recorded
EEG signals can be used for a variety of tasks such as detecting epilepsy, monitoring sleep phases or for
brain-computer interfaces (BCIs) [2].
In this project, EEG signals are analysed solely for BCIs. According to Iturrate, Chavarriaga and
Millán [3], BCIs can be seen as systems that translate brain activity patterns into commands that can
be executed by artificial devices. Also Leeb [4] defines BCIs as the idea of controlling a machine by
«thinking» rather than by manual operation.
A sub-area in which BCI systems can be applied are motor imagery (MI) tasks, which is the BCI
paradigm all experiments of this work are based on. The MI term refers to the mental imagination of
body movements [5;6]. The signal captured during this mental tasks can then be used in a supervised
learning classification problem [7;8]. Models which reliably recognise body movements based on brain
activity could in future enable people to operate prostheses, exoskeletons or wheelchairs, control games
and typewriter applications [3]

Nowadays, BCI systems mainly rely on machine learning (ML) approaches [9;10]. But still, EEG signals
are complex, non-stationary, high dimensional and they lack of a low signal to noise ratio [1;11;12].
The application of deep learning (DL) has led to further advances in the use of machine learning for
MI tasks and surpassed the performance of classical ML models such as the Support Vector Machine
(SVM) [13;7;8]. Especially with the use of Convolutional Neural Networks (CNN) and their ability to
artificially generate valuable features, preprocessing is simplified and less expertise is required [14]. How-
ever, all the advantages of modern DL approaches come at the cost of a large amount of data needed
for training, which poses a new limitation in classifying EEG signals [15]. Recoding EEG data is time
consuming, requires in-depth knowledge and determined volunteers need to be trained specifically for
the MI task at hand [16;1]. All these circumstances lead to a general shortage of data in this area [1].
This project focuses on transformation-based data augmentation to tackle the problems of data scarcity.
Augmentation techniques address the lack of data by artificially increasing the distribution of training
data and ideally improve a model’s generalisation capabilities across multiple data sets [17;18]. They
should also reduce the problem of exactly modelled training data, known as overfitting [17;18]. The
literature proposes and assesses many augmentation techniques for EEG data [19;20;21;22;23;24;25;26]. But
only in a few papers, augmentation techniques are compared in a broader scale [27]. Most of the literature
focuses on the theoretical introduction of new augmentation strategies rather than on investigating their
effects in different experimental contexts. The goals of this project is therefore to conduct extensive
experiments with the three different augmentation techniques Channels Dropout (CD), FT Surrogate
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CHAPTER 1. INTRODUCTION 1.2. Related Work

(FTS) and Smooth Time Mask (STM) to evaluate the transferability of this methods to different tasks.
The techniques will be assessed on two MI data sets, with two CNN architectures of contrasting depth
and a SVM, optimized for a single person or for all people in a data set.

1.2 Related Work

Although the use of augmentation techniques for EEG classification tasks is still in its infancy, there
are several papers in the literature on their application for motor imagery BCIs [27;28;29;30;31;32;33]. This
emphasises the interest and attention this area currently experiences in the data and neuroscience
community. In addition, there are several papers proposing new augmentation methods for EEG data
in general, which can potentially be transferred to motor imagery classification tasks. Schwabedal et
al. [19], Mohsenvand [23] and Cheng et al. [24] propose FT Surrogate and Smooth Time Mask initially
for sleep stage detection and then for motor imagery tasks. Saeed et al. [20] and Deiss [22] introduce
spatial techniques like Channels Shuffle or Channel Symmetry for the detection of diseases such as
seizures, while Krell and Kim [25] use sensor rotation to classify events in brain activity. Wang et al.
suggest a Gaussian noise based method for emotion recognition [21]. Finally, Alwasiti and Yusoff [34] use
a procedure called Mixup Augmentation for a motor imagery classification task, primarily introduced
by Zhang et al. [26] for image classification.
Nevertheless, no general statement can currently be made about the effectiveness of augmentation
techniques for EEG data, and as Rommel et al. [27] emphasises, extensive experiments are still necessary.
Also, all existing investigations underlay on a fairly different setting with its distinct focus. As an
example, whereas Freer and Yang [35] concentrate on the effects of augmentation techniques on a
specific data set, George et al. [31] focus on the evaluation of augmentation methods with an newly
introduced model architecture and Zhang et al. [26] consider the impacts of a distinct technique.
Recently, Rommel et al. [27] conducted an extensive comparison between different augmentation tech-
niques such as Sign Flip, Gaussian Noise, Sensor Rotation or Channels Dropout. In the paper, the
shallow CNN of Schirrmeister et al. [36] was applied on the four-class MI data set of the BCI IV 2a
competition [37] as well as to a sleep stage detection task on the Sleep PhysioNet data set [38]. As the
model and data set are publicly available, a reconstruction of the experimental results can be carried
out for comparison. It also allows to extend the investigations to different experimental settings such
as changing the underlying data sets or models to gain a deeper understanding.
What is still unknown, is whether the results of the presented papers can be transferred to other
experimental scenarios of motor imagery classification tasks and how sensitive these results react to
changes. Specifically, this means to different data sets, models or changing training scenarios, such as
optimising a model for a single person or for a group of different people.
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1.3. Goals CHAPTER 1. INTRODUCTION

1.3 Goals

The main objective of this work is to perform extensive augmentation experiments with a selected set of
augmentation techniques in changing experimental contexts in order to draw further conclusions about
the effectiveness of the methods for an motor imagery classification task. The aims of the experiments
can be segmented in three different goals:

1. Assessing the change in classification accuracy when applying a specific augmentation technique
to different data sets in order to validate the transferability of a method to new motor imagery
classification tasks.

2. Evaluating augmentation methods for different training scenarios which result in discrete optimi-
sation problems and a changing level of difficulty for the model.

3. Comparing the applied techniques between neural based and classical machine learning ap-
proaches.

All this investigations and experiment should answer the question about an augmentation strategy’s
adaptation capabilities to different scenarios. Then if evidence can be found, that some methods
are likely to increase the performance for motor imagery tasks, this could speed up the decision and
implementation processes in EEG classification projects. Furthermore, a statement should be made
about the extent to which the evaluated augmentation techniques improve the training process in EEG
classification tasks. In other words, do they increase classification performance, make a model more
robust to inter-subject variability, or do they improve the stability during training? Lastly, this project
should provide advice on additional experiments needed to assess the effectiveness of augmentation
techniques for EEG data based on the new results of this work.
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Chapter 2

Theoretical Introduction

2.1 Electroencephalography

Electroencephalography (EEG) is a prevalent approach to extract information of brain dynamics [39].
While the signal was mainly used to identify neurological diseases, such as epilepsy, brain tumours,
head injury and sleep disorders, it is nowadays considered as the most predominantly employed input
signal in BCI systems [40;41;1].
The signal is recorded by placing electrodes on the scalp that measure the electrical activity of the
brain over time, which is called an electroencephalogram [2]. More precisely, each electrode records
electrical activities describing the amplitude measured in V or µV over time [42]. An EEG channel
is then obtained using a differential amplifier, which takes two electrical inputs from two electrodes
and outputs the difference between the two inputs [42]. In other words, an EEG channel describes
the relative change in electrical activity between two referencing electrodes [43]. The two reference
electrodes that form an EEG channel depend on the placement of the electrodes on the scalp, which is
called montage [43]. Many different types of montages exist. The two types appearing in this work are
the monopolar and the bipolar montage [43]. In a monopolar recording, an EEG channel describes the
voltage difference between an electrode placed on the scalp and a single reference electrode placed on
the earlobe called a ground electrode [43]. This results in as many EEG channels as electrodes placed
on the scalp. In contrast, in a bipolar recording, a channel is formed by the difference between two
adjacent electrodes on the scalp [43]. Depending on the strategy to select the referencing electrode, this
often results in less channels than electrodes. Ultimately, taken all channels together, an EEG signal
can also be described as two dimensional data formulated by its shape of (c × t) where c defines the
number channels, and t expresses the time [39;36].
EEG signal can obtain a low signal to noise ratio depending on the application. The term noise refers
to unwanted signals or frequencies within the combined input of all channels. Noise in the signal can
have multiple reasons. Electrodes may detect different base activities in the brain that occur due to
environmental perceptions or other vital processes, which results in similar amplitudes and may be
undesirable for motor image classification [1;44;45]. Another reason can be different placements of the
electrodes on the scalp [44;45].
EEG signals are non-stationary [11;12]. The term non-stationarity describes the characteristic that the
statistical values of a signal such as mean, variance and covariance change over time [46]. This makes
it challenging for model to classify data recorded over time (e.g. different days).
Finally, EEG signals not only comprise a high variability for data recorded from a single person, but
also for data acquired from different people [47]. A person from which EEG data is recorded is called
a subject [48]. According to Cheng et al. [24], data recorded from distinct subjects can be interpreted
as different domains and subject-specific features are an integral part of EEG signals. The resulting
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2.2. Motor Imagery Data Set CHAPTER 2. THEORETICAL INTRODUCTION

variance between subject is called inter-subject variability [24]. This phenomenon is referable to the
physiological differences between humans [47].

2.2 Motor Imagery Data Set

In the literature, in neuroscience and in the field of machine learning, domain specific terms are some-
times used ambiguously [1]. Therefore this section aims to clarify the terminology of motor imagery
data sets used in this report.
Motor imagery data is collected from subjects in one or more sessions [49;50]. A session is a finite
collection of EEG data from a subject, which also includes the fixation and removal of electrodes [48].
A session is further divided into runs in which the subject has to solve one or more tasks, called trials,
which are the atomic entities to which a label can be assigned [51].
EEG signals can be described as a continuous incoming stream of values at a given time point [52]. As
soon as the defined trials are executed, markers are assigned to the signal indicating at which point in
time a certain task was executed [1]. Then a label is assigned to every marker, according to the motor
imagery task performed by the subject [1].
Since the execution of a task can take several seconds, it would not be representative to assign a label
to a single point in time [52]. For this reason, a window of defined length is assigned to a marker, which
serves as input for a classifier or for a preprocessing pipeline [1]. Such windows are called epochs in
the neuroscience domain. The term epoch can thus lead to slight confusion with the term epoch from
the machine learning terminology, in which it means a pass through the train data set when training a
model [1]. Figure 2.1 shows the described possible hierarchical structure of a motor imagery EEG data
set.

Figure 2.1: Motor Imagery Data Set Structure
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2.3 EEG Preprocessing

Due to the characteristics of EEG signals described in section 2.1, preprocessing is often applied before
classifying a data set. An often exploited family of technique to preprocess EEG are filters. The main
idea of filtering EEG signal is to remove unnecessary signals or frequencies while trying to keep the
relevant information [53;54]. High- and Low-Pass filter, Linear-Adaptive-Filter or Kalman-Filter are just
some existing in the literature [55;54;56;53;57]. Noise in the signal can originate from different electrode
placements, the used appliances, the experimental environment or from base activities in the brain of the
subject itself [58;1;59;60]. However, filtering is often a complex task because noise and relevant information
are often overlapping [55;54]. A successfully applied filter for EEG data is the band pass filter [61;62;58;36].
In the literature, frequencies below 4 Hz are often considered as noise for motor imagery tasks and could
be eliminated by the filter [62;37;36]. Regarding Gatton [63], the signal in this low frequency regime likely
emerge from eye movements by the subject. However, since the frequency ranges may refer to different
actions performed by the subject, the frequency limits should be set according to the application and
the classes to be predicted for a given data set.
EEG data is scarce in most publicly available data sets. Therefore, an efficient use of the data is vital to
achieve reasonable results with data intensive model families such as neural networks. Data efficiency
refers to the ability to learn in complex domains without a large amount of data, or to pull out more
information of a given data set if training data is scarce [64;65]. One method to increase the number
of samples, proposed by Schirrmeister et al. [36], is to cut the recorded trials into multiple crops. This
method was inspired by similar procedures in object recognition within images [66;67]. Formally, each
trial Xj ∈ RE×T with a number of E electrodes and T time steps is divided into crops of size T ′ time
steps [36]. A resulting crop is defined as Cj = {Xj

1..E,t..t+T ′ |t ∈ 1..T −T ′} with T −T ′ as the number
of crops or new samples per trial [36]. Finally, to each evolved sample the same label yi is assigned, as
it was for the original trial [36]. As Schirrmeister et al. [36] points out, the ultimate consequence of this
procedure is that the model is forced to use features that are present in all crops and cannot rely on the
global temporal structure of an experiment. Another effect of cutting a trial into several smaller windows
is the dimensionality reduction per sample. This can speed up training and simplifies the model’s task
to approximate the underlying distribution. However, this approach can also be disadvantageous when
a large context of the data is required for discrimination, hence if the EEG data used is highly dependent
on the time domain.

2.4 Training Scenarios

EEG data is usually recorded from multiple subjects, and due to the hierarchical structure, different
training scenarios for a motor imagery classification task exist. For instance, a tuned model can be
optimised for the body movement imagination of a single person or, with increasing complexity, for a
group of people. In other words, the model can be trained on different distributions. Either on the
distribution of a single subject or on a larger distribution of all subjects in a training data set. Ultimately,
this relates to the question about the model’s subject-invariance or how effectively it can be applied
to new subjects, also known as generalisation over subjects [24]. The term generalisation in machine
learning refers to the ability of a model to adapt to unseen data or data sets [68]. In this work, it is also
used to describe the adaptation capabilities of a model across different scopes of a data set, such as
subjects.
This work is concerned with whether an augmentation technique can advantageously expand the training
distribution for a single subject only or whether it can make a model more subject-invariant. One possible
way to test a model’s generalization capabilities is to split the data set differently into train-, valid-
and test set, allowed by the hierarchy of a MI data set described in section 2.2. For this project, the
different splits applied are called split strategies. Possible split strategies are discussed in the upcoming
paragraphs.
First of all, a data set can be divided by subjects. In the literature, a distinction between training a
model on a single subject is called intra-subject classification, while inter-subject classification refers to
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2.4. Training Scenarios CHAPTER 2. THEORETICAL INTRODUCTION

training on multiple subjects [69;70;71]. Intra- and inter-subject classification often concerns about the
magnitude of variance motor imagery data contains. In an inter-subject scenario, the within-subject
variability refers to question if a subject is capable to imagine body movements similarly such that the
same amplitudes in the signal are present over time [51;69]. Evidently, the within-subject variance also
depends on the amount of training a subject received before performing a certain MI task [51;69]. In
contrast, in an inter-subject scenario, the between-subject variability refers to how similarly our brain
emits a signal for a particular body movement and how similarly two subject learned a distinct task [51;69].
Because inter-subject classification can be used to evaluate a model’s generalisation capabilities between
subjects, it is essential to include a subject in the test set which the model has never seen before in order
to assess the model performance appropriately [70;71;27]. Alternatively, the performance of the model in
an intra-subject environment could be assessed by averaging over the results obtained by the individual
subjects of a data set [69].
Further a data set can be split up by different sessions. This refers to the question of whether a trained
model focuses on the correct information in the data rather than random background noise caused by
the subject’s current mental state, which can vary from day to day [50]. This scenario can be used, for
example, to assess how well a model generalises for a subject between days. But also for this method,
it is important that the final test set includes sessions which the model has not seen before [50;27]. For
this strategy, one session is often used for training and a second for testing [50]. The division of a data
set by session is called cross-session classification [48].
A data set can also be decomposed by runs [50]. This type of division can be used in a within-session
classification scenario [48]. In this setting, runs can be divided into the different sub data sets for training,
validating and testing [48]. If still multiple sessions were recorded, the performance of a model family can
be evaluated by calculating the average over the performances obtained by the different sessions [48].
Within-session experiments contain the least amount of variance, which is why a higher performance of
the model is expected. It helps to solve the question if ML algorithms are capable to classify EEG data.
In the view of the author of this report, within-session classification is more applicable to experiments
(e.g. variance of EEG data, signal to noise ratio or the effect of a subject’s mental state) rather than
practical use cases of EEG classification because of the unevaluated generalisation of the model over
time.
Lastly, as in usual supervised learning classification problems, a data set could also be divided by
samples [48]. This strategy can be chosen if more flexibility is required or none of the above general
strategies is applicable for a given experiment. However, combining samples from multiple sessions to a
test and validation set could likely result in double dipping and an overestimation of performance, which
is why this strategy should be considered carefully and only if required by the application. Double dipping
refers to train and evaluate a model on the same data set with resulting high statistical performance
and possibly weak generalisation due to overfitting [72].
In summary, EEG data sets can be divided by...

• ...subjects with a distinction between intra- or inter-subject classification.
• ...sessions with a distinction between within- and cross-session classification.
• ...runs which can be used to divide the data set for a within-session classification
• ...samples which gives the most flexibility but is potentially leads to a double dipping problem.

Also, by choosing different strategies, arbitrary combination can be achieved depending on the require-
ments of the experiment or application. Therefore, it is important to specify which strategies are used
for a set of experiments in order to differentiate between obtained performance results and in favour of
reproducibility.

10



CHAPTER 2. THEORETICAL INTRODUCTION 2.5. Metrics

2.5 Metrics

In the interest of reproducibility and meaningfulness of the experiments, it is essential to name the
metrics used and explain why they were chosen [1]. There are several opinions in the literature on
how to select expressive metrics for a supervised learning classification task. On the one hand, a
metric should accurately assess the real classification performance of a model. On the other hand, it
should ensure the interpretability of the results for humans [68;73;74]. Ng [68] suggests to use a single
metric for an efficient comparison between consecutive experiments, whereas Doshi-Velez and Kim [74]

emphasise the inability of a single metric, such as the accuracy, to describe a real world problem [74].
In this report a combination of both approaches is applied. First, a single primary metric is identified
for a straightforward, elementary comparison between experiments. Second, additional metrics should
be computed to allow a more in-depth analysis of a change in classification performance, differences
between classes of a data set or the sensitivity of a model to hyperparameter changes. The aim of this
section is to present possible metrics that can be used in the experiments conducted for this project.

2.5.1 Accuracy

Accuracy is the most commonly used performance measure in supervised learning classification problems
because of its simple interpretability and straightforward calculation [75;76]. However, it is often criticised
for not being able to capture all facets of a model’s classification performance and for failing with
imbalanced data sets [77;78]. Accuracy is defined by [79;78]:
Accuracy = Number of correct predictions

T otal number of predictions

For binary classification, accuracy can also be defined as follows:
Accuracy = T P +T N

T P +T N+F P +F N

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives.

2.5.2 Precision, Recall, F1 Score

In order to mitigate the shortcomings of accuracy, precision and recall or the F1-score can be used.
This encompasses the especially the application with imbalanced data sets [75]. Precision is a measure
of relevance, while recall is a measure of how many truly relevant results are returned. The F1 score can
be interpreted as a harmonic mean between precision and recall and is commonly used as it combines
the two metrics into one [80;68].
Because precision and recall are originally defined for a binary classification problem, an extended version
of the metrics is required for a multi-class classification problem. Mainly two methods exists. First,
the macro-averaged form, in which the metrics are assessed in a one-against-all approach for each
class, followed by taking the mean over the partial results [75]. Second the weighted average of the
metrics. This form works similarly, but the distribution of the classes is also taken into account to
avoid overestimating the results in an unbalanced data set [80]. To have an alternative to accuracy in
experiments with unequally distributed classes, only the weighted form of the metrics is considered for
the experiments of this project. Formally the three metrics are defined by [81]:
Precision

Weighted Precision =
∑n

i=1|yi| T Pi
T Pi+F Pi∑n

i=1|yi|

Recall

Weighted Recall =
∑n

i=1|yi| T Pi
T Pi+F Ni∑n

i=1|yi|
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F1 Score

F1i = 2× P REi×RECi
P REi+RECi

With F1i = F1 Score for class i, PREi = Precision for class i and RECi = Recall class i

Weighted F1 Score =
∑n

i=1|yi|×F 1i∑n

i=1|yi|

2.5.3 Confusion Matrix

In machine learning, the confusion matrix is typically used to evaluate or visualize the performance
of a model in a supervised classification problem [82;83]. Especially in a multi-class environment, the
confusion matrix can help to understand the performance of the model on different classes and allows to
identify classes on which the model performs well and on which it discriminates poorly (is confused) [82].
This is fairly impossible by only considering a single metric such as accuracy or much more expensive
to study precision and recall for every single class. Figure 2.2 shows an example of a confusion matrix
used in this project. Important to mention is, that for all confusion matrices computed in this work,
the predicted labels are represented by the x-axis, whereas the true labels lie on the y-axis.

Figure 2.2: Sample Confusion Matrix

2.5.4 Receiver Operating Characteristic Curves

Computing the Receiver Operating Characteristic (ROC) curve for this work can have two main ad-
vantages. First, it provides a supplementary visualization on how well a model performs [84]. Like the
confusion matrix, in a multi-class data set it provides a simple way to visually interpret the model per-
formance on the different classes [85;84]. For all classes, the curves are calculated with a one-against-all
approach as the method originally was developed for a binary classification task [84]. The curve for each
class is created by plotting the true-positive-rate (TPR) against the false-positive-rate (FPR) at various
threshold settings [85;84]

Second, it offers the area-under-the-curve (AUC) score as additional metric to accuracy and F1 score [84].
The area under the curve assesses the discriminative ability of a model [84]. An AUC value of 1 means a
perfect and a value of 0.5 means no discriminative ability of the model [84]. Figure 2.3 shows a sample
ROC curve used in this project.
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Figure 2.3: Sample ROC Curve

2.5.5 Cohen’s kappa Score

Cohen’s kappa score is widely applied in statistics, psychology, biology and medicine, but got only little
attention in the field of machine learning [86]. Because it is used in medicine, the Cohen’s kappa score
is more commonly utilized in EEG classification than in other machine learning tasks [87;88]. Basically,
Cohen’s kappa score measures the agreement between two raters [89]. That is why the score is often
considered when comparing a system with human performance [86]. When used as classification metric,
the first rater are the true labels and the second rater is the classifier [87]. The score is then defined as
follows [86]:
K = Po−Pc

1−Pc

With Po = Probability of agreement Pc = Probability due to random chance / agreement
Cohen’s kappa score is generally valued as more robust in terms of reliability and validity in comparison
to the accuracy score [88]. This is especially the case when dealing with an imbalanced data set. An
often referred downside of Cohen’s kappa score is the harder interpretability than accuracy due to the
fact that it embraces a possible value range from [-1 ; 1] [87;86]. Hence, in favour of simplicity often just
accuracy is used.

2.6 Machine Learning Models

This section aims to introduce the models used during the experiments.

2.6.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are widely used on EEG data sets [27]. CNNs use learned
convolutional filters to extract features for classification and are therefore often preferred over classical
machine learning models because less preprocessing and expert knowledge is required [14;1].
Similar to ordinary Multi Layer Perceptrons (MLP), the representational capacity of CNNs can be scaled
by increasing the number of layers. CNNs with multiple layers are called deep CNNs, those with a small
number of layers are called shallow CNNs. Investigations showed that earlier layers of a CNN extract
more low level features such as edges in images and later layers extract more high level features like
an entire house [90]. The higher capacity of deep CNNs comes at the cost of requiring more data to
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train the increased number of parameters, training may take longer and more parameters need to be
stored [36].
As input, the two-dimensional EEG signal can be passed directly to the model and does not have to
be reduced to a single dimension as with MLPs. This because usually two dimensional convolutional
filters are used for CNNs [36]. Depending on the architecture, in a supervised classification problem, the
extracted and flattened features are then passed to one or more linear layers, followed by a Softmax
layer to discriminate between the different classes. The output of the model is a probability distribution
over the classes of an EEG data set.
In the literature, several architectures of CNNs for motor imagery data sets are proposed [36;91;92;35].
This work compares two different CNN architectures which are explained in more detail in the following
sections.

2.6.2 Shallow Convolutional Neural Network

The first architecture used is a shallow CNN introduced by Schirrmeister et al. [36], which is visualised
in figure 2.4.
The first two layers of the CNN comprise a temporal and a spatial convolutional filter, similar to a
Filter Bank Common Spatial Filter (FBCSP) approach [36]. FBCSP is a combination of a filter bank
(FB) together with the Common Spatial Patterns (CSP) algorithm [93]. Basically, a filter bank is a set
of bandpass filters that separates the input signal into several components that represent a frequency
sub-band of the original signal [93]. For each sub-band, the CSP algorithm then tries to find a set of
spatial filters that maximise the difference between two classes of a data set [94]. But in contrast to
FBCSP, the CNN combines both computational steps in one network and there is no need to define
frequency bands by hand [36].
After the first two layers, a non-linear activation function is plugged in, followed by a mean pooling
layer. According to Schirrmeister et al. [36], the pooling layer enables the network to learn a temporal
structure of the band power changes within a trial. Finally, a linear classification layer is used together
with a softmax activation function to obtain a probability distribution over the classes of the data
set [36].

Figure 2.4: Architecture Shallow CNN
[36]
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2.6.3 Deep Convolutional Neural Network

To contrast the results of the shallow CNN, this project also conducts experiments with a deeper CNN
proposed in the work of Schirrmeister et al. [36]. Instead of two convolutional layers in the shallow
network, the architecture of the deep CNN consists of four convolutional layers, as visualised in figure
2.5.
Similar to the shallow network, the first two layers represent a temporal and a spatial convolutional layer,
followed by a max pooling layer. The max pooling layer is used in order to reduce the dimensionality
and make the system more transformation invariant [95]. In the original paper, no clear evidence was
found why maximum pooling was used for the deep CNN and average pooling for the shallow network
and rather based on empirical testing [36]. A possible explanation could be that peaks in the signal
should be preserved to deeper layers of the network, while the shallow CNN relies more on trends in
the signal that are smoothed by mean pooling. Three additional convolutional blocks consisting of
a convolutional and a max pooling layer complete the feature extraction layers of the network. The
increased number of layers should lead to higher level representations of the signal as input features for
classification in comparison to the shallow network [14]. Finally, a linear layer is used to compute the
probabilities to a set of classes given by a data set.

Figure 2.5: Architecture Deep CNN
[36]
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2.6.4 Support Vector Machine

To get a first impression about the effectiveness of augmentation techniques for classical machine
learning algorithms for motor imagery data, a support vector machine (SVM) is used as third model of
this project.
Many classical models such as K-Nearest-Neighbour (KNN), Support-Vector-Machine (SMV), Linear-
Dicriminant-Analysis (LDA) and Random Forests exists. In the literature, the SVM mostly dominates
with the best average performance on motor imagery classification tasks [96;97;98;99;100]. One explanation
noted in the literature is that the SVM can better deal with high dimensional data and is therefore
more resistant to the curse of dimensionality [100].
A SVM is a type of supervised learning algorithm that can be used for classification or regression
tasks and was originally introduced by Cortes and Vapnik [101]. Since then, SVMs have been applied
successfully in various areas, including economics, bioinformatics and motor imagery BCI systems [102;97].
It works by finding the hyperplane in a high-dimensional space that maximally separates the different
classes [103]. SVMs use kernel functions to map an originally non-linear separable feature space into a
higher dimensional Hilbert space in which the data is linearly separable [102].
Many hybrid combinations of SVM with other techniques are also mentioned in the literature for motor
imagery classification tasks. Dong et al. [104] use a hierarchical classification approach by leveraging a
hierarchical SVM (HSVM) to improve classification performance. While Ma et al. [99] propose a particle
swarm optimisation (PSO-SVM), Selim et al. [105] apply a Bat algorithm (BA) in a CSP-BA-SVM for
an optimised hyperparameter tuning instead of using grid search. For simplicity, this work uses the
default implementation of SVM with different kernel functions.

2.7 Augmentation Techniques

Data augmentation is a widely used strategy if data is scarce, the data is imbalanced or if there is
explainable variance within the data which can be generated synthetically [18]. Moreover data augmen-
tation techniques are often used to mitigate the problem of overfitting [18]. However, data augmentation
should only be used if it is unfeasible to gather alike samples from the real data distribution [18]. The
main idea behind data augmentation is to apply label preserving transformations to an input data set
in order to add more invariant examples [106].
Formally, to a sample-label pair (x,y) a transformation function Φ(x) with a certain probability paug is
applied a priori [27]. If a model is trained accordingly, it should theoretically output the same probability
distribution for the augmented input P (y|Φ(x)) as for the same input sample without the applied
transformation P (y|x) [27].
Augmentation techniques can be applied on the different domains of an input signal [35]. There exist
strategies for the time, the frequency and the spatial domain [27]. In this report we use a mix of
techniques of which each targets one of this domains.
In order to be able to conduct augmentation experiments on EEG data, strategies need to be se-
lected. Several augmentation strategy investigations and experiments were conducted in the litera-
ture [28;29;32;33;27]. Also diverse augmentation strategies for EEG data as well as for motor imagery
tasks were proposed [19;20;21;22;23;24;25;26]. This section aims to discuss applicable augmentation strate-
gies from the introduced papers, which had a positive effect on classification performance of a motor
imagery classification task and are implementable in the scope of this work.
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2.7.1 Frequency Shift

Frequency shift is an augmentation technique which targets the frequency domain of an input signal.
It was first introduced to mitigate the problem of inter-subject variabilities in sleep stage classification,
where changes in the frequency of a signal indicate a stage transition [27]. According to Rosenberg and
Van Hout dominant and characteristic peaks in the frequency of EEG signals can be vital for a model
to be able to distinguish between classes [107]. The experiments of Rommel et al. [27] also showed that
it can be beneficial to use this augmentation technique for a motor imagery task in a cross-session
or inter-subject setting. This because it was examined that the shape of the signal between subjects
can be likewise but the peaks within a window could occur at a different frequency [27]. Since the
experiments conducted are based on cross-session and inter-subject settings, it could be helpful to use
this method.
The technique described by Schirrmeister et al. [36] and Rommel et al. [27] allows to specify a maximum
magnitude ∆f by which the power spectral density (PSD) of the signal gets shifted within a win-
dow. The final magnitude applied then gets sampled from a uniform distribution between the interval
[−∆fmax, +∆fmax] in order to prevent a shift of the mean within the training data [35;27]. Additionally,
the probability can be defined to which this transformation is applied to an input window. An example
of shift of +∆f = 2 Hz is shown in figure 2.6

Figure 2.6: Frequency Shift - Frequency Example
[36]

2.7.2 Fourier Transform Surrogate

The aim of the Fourier Transform Surrogate (FT Surrogate or FTS) method is to generate a different
waveform of the input signal while leaving the PSD unchanged [19]. Using FT Surrogate as EEG
augmentation technique was first proposed by Schwabedal et al. [19] to tackle class imbalances in EEG
sleep staging data. Generally, this method decomposes the Fourier components sn of a signal xn into
amplitudes an and phases Φn. The method assumes that the EEG signals are generated by stationary
linear processes [19] in which the Fourier phases are random numbers in the interval [0,2π). For example,
the new random numbers can be taken uniformly from the interval [0,λ·2·π), while leaving the
amplitudes untouched [27;36]. Lambda describes the phase noise magnitude which is a hyperparameter
and can take a value between zero an one. Lastly, the original phases of sn are replaced by the new
sampled ones and transformed back to the time domain by a inverse Fourier transform [19]. Like this,

17



2.7. Augmentation Techniques CHAPTER 2. THEORETICAL INTRODUCTION

a statistically independent sequence xtn is drown while representing the same generating distribution
and preserving the frequency-band power ratios of xn

[19].
The underlying idea of this augmentation method is to force the model to focus on the PSD rather
than the signal’s time representation [27]. One the one hand, this could especially be helpful in a motor
imagery tasks where the time on which a change in the signal occurs is not the most relevant information.
One the other hand this method should be used careful on every task where the information of the
time domain is relevant. Figure 2.7 shows an example of an original representation of a signal and by
one of it’s FT Surrogates. It can be seen that important peaks at a given time point vanished in the
new representation. In addition, it was examined in the figure 2.8 whether the spectral representation
remained the same before and after the transformation. It can be seen, that the band-power ratios
remained the same, but the entire PSD function gets slightly squished and smoothed.
FT Surrogate has two degrees of freedom, the phase noise magnitude λ and the probability paug with
which the technique is applied to a certain trial.

Figure 2.7: FT Surrogate - Time Example
[36]

Figure 2.8: FT Surrogate - Frequency Example
[36]
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2.7.3 Channels Dropout

The Channels Dropout is an augmentation technique in the spatial domain of an EEG signal [27]. Like
the original dropout layer [108], where a neuron of a dense layer is randomly omitted, the idea of the
Channels Dropout is to set the amplitudes of a randomly picked EEG channel to zero [20]. In other
words, the information of a channel gets randomly removed by a defined probability pdrop

[20].

This augmentation technique was first introduced by Saeed et al. [20] with the idea to reduce the model’s
dependency on a given input channel. As a result the model should be more error prone against
overfitting and show a better generalization. Regarding Banville et al. [109] the lack of a consistent
quality of the input signal recorded by a dedicated channel is one of the major challenges when dealing
with EEG signals. Moreover, EEG channels are highly correlated and often have a low signal to noise
ratio [1]. With Channels Dropout, the model should get invariant to the number of input channels and
learn on the entire information available, instead of focusing on single channels [27].
Formally, the technique is setting the values of a channel to zero for each input window X ∈ RC×T ,
where C denotes the number of channels and T the number of samples over a given time [27]. Finally,
the augmented signal has the form ChannelsDropout[X]c := dc ·Xc, where dc is a vector of length C
and consists of values of a Bernoulli distribution B with a probability of pdrop. As the formal definition
suggests, the only parameter that can be tuned with this augmentation technique is pdrop.

2.7.4 Sign Flip

While it is important for augmentation techniques to preserve the validity of a given input, it is not
obvious why a flip of the sign of an EEG signal can fulfil this requirement. In the literature, Freer et
al. [35] note that the signal retains its frequency, spatial and power components even when the sign is
inverted, making this method a valid augmentation technique for EEG data. The method looks similar
to a phase shift of 180 degrees. However, with sign flip the timing of the oscillations remains the same
in contrast to a 180 degree phase shift where the timing of the signal’s oscillations is reversed [35;110].
Additionally, Rommel et al. [111] argue that the information encoded in the electrical potentials captured
by EEG sensors are likely to be invariant to the polarity of the electric field. The polarity of an EEG
signal refers to direction of the flow of electric charges along neuron dendrites [111;112;113]. Since charges
moving to deeper layers of the cortex as well as moving up to superficial ones, both signs are likely to
occur. Finally, Rommel et al. [111] also point out that the polarity can also be influenced by the choice
of reference electrode.
The sign flip augmentation method is defined by multiplying each channel by −1 with a probability of
paug which results in SignF lip[X](t) := −X(t). Ultimately, the only hyperparameter to be tuned for
the sign flip augmentation technique is paug. Figure 2.9 shows an example of an applied sign flip to
the signal of a given input channel.
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Figure 2.9: Sign Flip - Time Example
[36]

2.7.5 Time Reverse

Reversing the time of an EEG signal has no effect on the power components of a signal while generating
a new input [35;27]. Nevertheless, it can be assumed that changing the time domain of an input signal
can be misleading if there lies important information in the sequence of events happening during an
epoch. In motor imagery, where a significant part of the information is contained in the frequency
range of the EEG signal, this augmentation method could still be helpful by generating additional input
signals. Furthermore, it would be beneficial if a model could become time-invariant to when a particular
pattern or task occurs in a certain time window, which could eventually increase a model’s generalisation
capabilities [27].
The technique is defined by inverting the time axis t with TimeReverse[X](t) := X(tmax − t) where
tmax is the length of a time window. As Figure 2.10 shows, the method can also be described as a
vertical flip of an input channel and has therefore some similarities to the sign flip technique. The only
hyperparameter also for this strategy is therefore the probability paug with which the transformation is
applied to a given channel.
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Figure 2.10: Time Reverse - Time Example
[36]

2.7.6 Smooth Time Mask

Masking of input data is used as augmentation technique in various domains [114;115]. It means that a
certain area of an input is replaced by an other signal. For the EEG data in this work Smooth Time Mask
(STM) is applied on the time domain, whereas it would theoretically also be possible to use it in the
frequency domain. The method proposed by Cheng et al. [24] consists of randomly replacing a certain
time frame of an input window by another substitute input. There are multiple variants of signals that
can form substitutes [24]. For instance, random noise from a Gaussian distribution or it could simply be
replaced by zeros, as used for this work [23;24]. Depending on the substitute chosen, the difficulty for
the model to generate a valid representation changes, which is why this method can also serve as a
regularisation technique [24]. Beside the substitution type, the three degrees of freedom of STM are the
length of mask, the position of the mask and the probability paug with which transformation is applied
to a given window [23].
The idea of this augmentation technique is to reduce the model’s dependence on a certain parts and
transient patterns of an input window [27]. Figure 2.11 shows an applied zero-mask of one second in
the middle of an input window of four seconds.
In addition, to examine the effect on the frequency domain, figure 2.12 shows the PSD before and after
applying Smooth Time Mask to the same signal. The visualisation shows, that some information in
the frequency domain gets lost, by smoothing out the curve for some frequency bands. If the curve is
smoothed, this could lead either to less variance between subjects, or important features for the model
to classify the signal were removed. There is also a reduction in PSD in some frequency bands, which
leads to a vertical shift of the signal in that band.
Formally, the technique is applied by replacing a proportion ∆t that starts from a randomly sampled
time point tcut within a given window [27]. The computation is then conducted by multiplying the
input signal X by a mask mλ, which is obtained by the result of two opposing sigmoid functions of
temperature λ [27]. The method is then defined by the following formula and its components [27]:

SmoothT imeMask[X](t) := X(t)·mλ(t) with
mλ := σλ(t− tcut)+σλ(tcut +∆t− t)
σλ(t) := 1

1+exp(−λt)
tcut ∼ U[tmin, tmax −∆t]
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Figure 2.11: Smooth Time Mask - Time Example
[36]

Figure 2.12: Smooth Time Mask - Frequency Example
[36]
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Chapter 3

Methods

3.1 Training Scenario Selection

This section aims to describe the training scenarios used in this project. As a result, data sets can be
selected and the applied partitioning strategy elaborated 3.2.

Figure 3.1: Training Scenario Selection

As described in figure 3.1, this project includes experiments on cross-session classification strategies for
a single subject (intra-subject) as well as for multiple subjects (inter-subject). This because for many
strategies, it is still unknown, if applied augmentation strategies achieve a divergent magnitude of
change in classification performance in different training scenarios [27]. Due to the constrained scope of
this work, not all strategy combination can be explored. Those two combinations were chosen because
of the higher benefit or applicability of those strategies in real world applications.
Depending on the prevalent structure in a dedicated data set, the implementation of the selected
strategies can vary. This section should give details about the general implementation of the strategies
over all data sets, whereas the granular descriptions of the strategy applications on a particular data
set can be found in the specific introduction in section 3.2.

3.1.1 Intra-Subject

In order to prevent a premature conclusion of the performance reached in an intra-subject setting, each
experiment is conducted for each subject independently. Subsequently, the mean over all subjects is
taken for the final assessment of an experiment’s performance. This method also allows to display and
to reason about the result distribution between subjects and also helps to draw a conclusion about how
sensitive a model reacts on the inputs given by specific subjects.
In this training scenario, because of the absence of multiple subjects, different sessions can be taken to
split between training, valid and test set. If only a limited number of sessions is available in the data set,
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valid and test set can also be split by runs from the same session. However, this should be conducted
carefully to not end up in a double dipping problem and no runs of the training session should be used
in valid or test set.
With the implementation of this multi individual subject analysis, a cross-validation (CV) like evaluation
is accomplished for the intra-subject strategy.

3.1.2 Inter-Subject

Similar to the intra-subject strategy, a cross-validation like evaluation of the performance metrics needs
to be achieved in order to draw a data set partitioning independent conclusion. Nevertheless, in
comparison to the intra-subject implementation, the cross-validation in the inter-subject setting of this
project is reached by first split up the data set by subjects. For the test set, a static number of subjects
is separated for the final validation depending on the data set size. The remaining data set is then
divided into a train and validation set in a leave-one-out-cross-validation (LOOCV) manner. This means
that one single subject per run is used as validation set and all other subjects are used for training.
After one run, the validation subject is replaced by another until each subject of the remaining data
set (after train-test-split) has been used once as a validation set. Also with this approach, it is possible
to evaluate an average performance. Finally, it increases the robustness of the evaluated training and
validation metric as it is independent of the partitioning of the data set.

3.2 Data Set Selection and Split Strategy Application

Based on the decisions made in the previous section 3.1, the data sets for this project can be selected.
Because the scope and time constraints do not allow to collect self-recorded data sets, publicly available
EEG data sets need to be found and analysed. In addition, conducting experiments on public available
data sets increases the probability to get comparable results by other researchers and allow them to
reproduce the findings, when a own recorded data set cannot be published. To cohere with the training
scenarios of this project, the public data sets need to meet the following requirements:

• the data set must encompass multiple subjects
• the data set must encompass multiple sessions
• it is favoured that the data set consists of multiple runs in order to enable follow up experiments

or having a larger data volume at hand if required.

3.2.1 Data Set Source

There are several EEG data sets publicly available. For this project, data sets distributed via «Mother
of all BCI Benchmarks» (MOABB) https://neurotechx.github.io/moabb/ were considered [116].
At the time of the report, 17 publicly available motor imagery data sets were accessible via the API
of MOABB, ranging from competition data to data sets published as part of publications [116]. For the
experiments of this work, two of them were selected according to the defined requirements in section
3.2.

3.2.2 Data Set 1 | BNCI2014001

The BNCI2014001 data set origins out of the BCI Competition IV [117]. The data set consists of EEG
data from nine subjects and two sessions recorded on different days [117]. The subjects were asked to
perform four different motor imagery task, namely the imagination of the movement of the left hand
(class 1), right hand (class 2), both feet (class 3), and tongue (class 4) [50]. Each session is comprised of
six runs separated by short breaks. One run consists of 48 trials (12 for each of the four possible classes),
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yielding a total of 288 trials per session [50]. The trials with a duration of four seconds were sampled
with 250 Hz and bandpass-filtered between 0.5 Hz and 100 Hz, recorded by 22 EEG electrodes [117].
The sensitivity of the amplifier was set to 100 µV and a 50 Hz notch filter was applied to suppress input
signals considered as noise by the creators of the data set [50]. Figure 3.2 shows the split strategies for
the BNCI2014001 data set specific to an intra- and inter-subject training scenario.
As described in section 3.1, each experiment gets conducted for each subject individually and sequentially
when applying an intra-subject strategy. During each processing of an individual subject, the first session
is used as training set. Because of the availability of runs in this data set, a split of the second session
by runs is used as validation and test set.
In contrast for the inter-subject training scenario, subject four is used as test subject. All remaining
subjects are partitioned in a LOOCV fashion for either train or validation set. Because the partitioning
here only depends on the subjects, both sessions were used for training, validating and testing.

Figure 3.2: Data Set BNCI2014001 Split Strategy

3.2.3 Data Set 2 | BNCI2014004

The motor imagery BNCI2014004 data set was created and used in the 2008 BCI competition [50]. In
the original paper of Leeb et al. [37], the data set consisted of ten subjects, which were asked to perform
the imagination of left hand (class 1) and right hand (class 2) movements. However, the actual data set
accessible via MOABB only contains nine subjects of which all were right handed [116]. For each subject,
five sessions are provided in the data set, whereby the first two sessions were recorded without, and the
last three sessions with feedback [37;116]. In the original paper only two sessions were mentioned, one
for screening and one for feedback [37]. Nevertheless, those two sessions were recorded on two different
days within two weeks [37]. Every session embodies six runs of twenty samples, making up a total of 120
balanced trials (60 class 1, 60 class 2) per session with a duration of 4.5 seconds per trial [37]. Although
the data was recorded in different runs, in the public accessible data set of MOABB, all runs were tied
together to a single run per session and not further annotated [116]. The data was gathered by using
three bipolar EEG sensors (C3, Cz, and C4) with a sample frequency of 250 Hz and an applied band
pass filter between 0.5 Hz and 100 Hz [37].
This data set was selected due to its binary classes in order to facilitate a comparison between binary
and multi-class classification problems.
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Figure 3.3 shows the used split strategy of the BNCI2014001 data set for an intra- and inter-subject
training scenario. In comparison to the BNCI2014001 data set, the BNCI2014004 data set does not
comprise runs but has multiple sessions. This is why for the intra-subject strategy session one to three
is used as training set, session four as validation set and session five as test set.
For the inter-subject training scenario similar splits are applied as for the BNCI2014001 data set.

Figure 3.3: Data Set BNCI2014004 Split Strategy

3.3 Preprocessing

In the experiment pipelines of this work, only minimal preprocessing steps are applied. The relevant
features should rather be learned by the convolutional neural networks during training. Because tuning
and exploring on further preprocessing techniques would go beyond of the scope of this work, the
methods and parameters suggested by Schirrmeister et al. [36] were used for this project.
The preprocessing before initialising the model is divided into four different steps. First the intended
channels of a data set are selected. Some data sets on MOABB not only comprise EEG but also
Magnetoencephalography (MEG) or Stimulation (STIM) Electrodes. For the experiments in this work,
only the EEG signal is used, which is why all other channels are discarded in the first preprocessing step.
Secondly, the the data is scaled to transform amplitudes from V to µV . As third step, a band-pass
filter is applied to remove avoidable noise. The analysed data gets high passed filtered above 4 Hz and
low pass filtered below a 38 Hz cut off.
Finally, before initialising the model, a exponential moving standardisation is performed in order to
scale the input signals into a proper regime for the activation functions, which speeds up learning and
mitigates the risk of vanishing or exploding gradients. In contrast to usual standardization, mean and
standard deviation are only calculated for a certain window and recalculated as the window roles over
the signal. This is beneficial for non stationary signals like EEG.
For this project, exponential moving standardisation is performed as follows: As first step, the expo-
nential moving mean mt at time t is computed by mt(xt) = λ·mean(xt)+(1−λ)·mt−1

[36]. Here,
λ represents the decay factor [36]. It controls how much weight is given to more recent data points [36].
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Then the exponential moving variance is computed by vt(xt) = λ·(mt −xt)2 +(1−λ)·vt−1. Even-
tually, the standardisation is applied to a given data point xt at time t as x′

t = (xt−mt)
max(√

vt,ϵ) , where ϵ is
used to prevent the division by zero.
As last preprocessing step after initialising the model, a distinct trial is cropped into several windows
to increase data efficiency. In order to decide on the parameters required for the window cropping,
information of the initialised model is required. Namely, the final convolutional receptive field size to
decide on the window stride during cropping.
A summary of the preprocessing applied and the used hyperparameters in the implementation can be
found in appendix A.2.1.

3.4 Metric Selection

An important task of any data science project that involves training and evaluating specific models
is to establish an appropriate and meaningful performance metric. Several metrics and methods were
introduced in section 2.5.
As suggested by Ng [68], a single metric is used to compare the different experiments of this work. For
that, accuracy was chosen because of its ability to provide an efficient and easy-to-interpret indication
of changes in classification performance. More precisely, not the absolute accuracy values are used,
rather the relative change in percent if a certain augmentation technique is applied. In this project,
accuracy does not suffer from the limitations discussed in chapter 2.5 because of the evenly balanced
data sets. However, all of the presented metrics are computed and stored for all experiments if further
analysis is required.
In addition to the number-based metrics, performance charts are created for all experiments. Namely,
a multi-class confusion matrix and ROC curves with the corresponding AUC values for all classes in the
data set. With this approach, not only the classification accuracy of a model can be evaluated, but
also the differences between and the sensitivity to classes can be investigated.

3.5 Augmentation Technique Selection

Because of the scope of this work, the number of applied augmentation techniques in the experiments
needs to be limited to three methods. The techniques introduced in section 2.7 were used in previous
publications. When selecting the methods for the experiments in this work, experience from previous
work should be employed. Therefore, table 3.1 shows the results obtained by Rommel et al. [27]. The
table also shows the dedicated hyperparameter values applied to obtain the listed performance. The
techniques for this project were selected based on the highest increase in relative accuracy when applying
a particular technique to a motor imagery data set compared to using the same model without applying
the technique. As a result, Smooth Time Mask, Channels Dropout and FT Surrogate are the selected
augmentation strategies further evaluated in the experiments of this work.

Technique Tuned Hyperparameter (HP) HP value Increase Accuracy in %
Smooth Time Mask ∆t 1.6 s ∼24%
Channels Droput paug 1 ∼21%
FT Surrogate ∆ Φ max 9/10 π rad ∼18%
Time Reverse paug - ∼8%
Frequency Shift ∆f 2.7 Hz ∼3%
Sign Flip paug - ∼0%

Table 3.1: Relative Increase of Accuracy Depending on Applied Augmentation Technique in Literature
[27]
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3.6 Experiments

The experiments of this work are divided into two main parts. First, a baseline tuning is conducted for
each model and every data set. Second, experiments with the proposed augmentation strategies are
performed to see the effect on the performance in comparison to the obtained baseline. This section aims
to give additional details on the two types of experiments carried out in this report. Especially about
the structure, the assumptions and scope decisions made. The entire list of conducted experiments can
be found in appendix A.2.2

3.6.1 Baseline Tuning

The baseline experiments are conducted to obtain a performance value that can be compared with the
results received when applying the selected augmentation strategies. The baseline performance should
be comparable to those found in the up to date literature in order to prevent a comparison which fails in
the foundation of the model. However, it is not the aim of this work to tune a model’s hyperparameter
in an exhaustive way. Nevertheless, this section should show how the baseline experiments are set up,
how the terms of the experiments are defined, which parameters were tuned for the considered models
and what data is logged for the experiments.

Structure

A baseline experiment can be separated into the following three levels. The experiment level, the trial
level and the run level. The experiment itself is defined as the top-level entity to tune a selected
model for a given data set. For instance, an experiment can be the process of tuning a shallow CNN
for the BNCI2014001 data set. Each experiment gets an id (e.g. BNCI2014001_Inter-Subject_NN-
Shallow_Tuning_Default_None) for identification, later reference and for building the relations between
the three levels.
Each experiment consists of multiple trials. A trial is a random combination out of possible hyperpa-
rameters with which a model is trained. Because of the training duration of a trail and the time scope
of this work, it is not feasible to conduct an exhaustive grid search over all possible hyperparameter
combinations. That is why Hydra in combination with an Optuna sweeper is used to pick the hyper-
parameter combinations randomly [118;119]. With Hydra all configurable parameters are set in a tree of
configuration files and with Optuna ranges or choices of values can be defined, over which the framework
should iterate for tuning the model. In addition, the configuration files improve the understandability
of the coverage of a certain experiment, enhance the reproducibility and enables further experiments in
a simple configurable way. The limit of trials per baseline experiment is set to 20 for this work.
Lastly, every trial also consists of multiple runs. The definition of a run depends on the applied split
strategy. This means on one hand, for an intra-subject scenario, a run is conducted for each subject
in the data set. The average performance over all individual subjects then builds the performance of a
trial. One the other hand for an inter-subject scenario, a run is conducted for all training subjects with
one subject using as validation set. Again, the average performances obtained with this LOOCV over
the training subjects constitutes the performance of a trial. To ease the comprehensibility of a baseline
experiment, figure 3.4 is visualizing the basic structure of it.
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Figure 3.4: Baseline Experiment Structure

Training

Depending on the model used during the baseline experiments, a different dictionary of hyperparameter
was used. The parameter options for the CNNs were identified by the use of the original implementation
of Schirrmeister et al. [36]. For any numerical parameters for which no suggestion in the literature exists,
a log scale parameter search was used to get a feeling for possible value range for a dedicated parameter.
Table 3.2 shows the used hyperparameter search space for each of the three models.
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Model Parameter Values

Shallow CNN Learning Rate Choice(0.00001, 0.0004, 0.0005, 0.0006,
0.000625, 0.00065, 0.0007, 0.0008, 0.001, 0.01, 0.1)

Weight Decay Choice(0, 0.0001, 0.001, 0.01)
N-Filters Range(10, 80, step=5)
Dropout Range(0.1, 0.6, step=0.05)
Activation Function Choice(’elu’, ’relu’, ’leaky_relu’)
Batch size Range(16, 64, step=8)

Deep CNN Learning Rate Choice(0.0005, 0.001, 0.005,
0.008, 0.01, 0.015, 0.02, 0.03, 0.1)

Weight Decay Choice(0, 0.0001, 0.00025, 0.0005, 0.00075, 0.001, 0.01)
N-Filters Range(10, 40, step=5)
Dropout Range(0.1, 0.6, step=0.05)
Activation Function Choice(’elu’, ’relu’, ’leaky_relu’)
Batch size Range(16, 64, step=8)

SVM Kernel choice(’poly’, ’rbf’, ’sigmoid’)
C choice(0.0001, 0.001, 0.01, 0.1, 1, 1.5, 2)
Degree range(1, 8, step=1)
Gamma choice(’scale’, ’auto’, 0.1, 0.001, 0.0001,

0.5, 0.05, 0.005, 0.8, 0.08, 0.008)

Table 3.2: Tuned Hyperparameter Space Baseline Experiments

Logging

For the baseline experiments different levels of logging and result persisting are applied. First, all logs
and generated plots while training are stored on the local instance. This allows valuable debugging
possibilities when logging problems occur during a long run of training. Additionally the integration
of Weights & Biases (WandB), a experiment tracking service, can be configured and activated for the
project [120]. This has the advantage that the results are available independently of the machine on
which the experiment was conducted and accessible via API for further analysis or visualization. Also,
WandB is based on a document-oriented database (MongoDB) which allows to query the data in a
systematic way [120]. Eventually, WandB is used to store configurations, performance metrics and plots
of a conducted experiment and all its trials and runs.
The decision to use WandB as persistence layer has advantages and disadvantages. It is simple to
integrate, the results are still accessible even if there are problems with the server on which the exper-
iments are conducted and it allows to generate visualizations and control the experiments on the fly.
Furthermore, additional services such as Slack can be integrated as a communication channel to get
informed when an experiment has been successful or as soon as an error occurs. A disadvantage is the
dependence on an external service and a online API to visualize the data. Due to the fact of a limited
time span of this work, the risk of a discontinued support was rated to be low. The most possible risk
that the work is facing with the decision to use WandB is a temporary unavailability of the service or
a quota exceeding. Beside this risks, the advantages of using a modern experiment tracking service
prevail and is often recommended in the data science community.
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3.6.2 Augmentation

As second part of the experiments of this projects, the selected augmentation techniques are added to
the baseline pipeline. This section aims to give detailed information about the structure, execution and
results logged by this experiments, such that it allows to reproduce or extend the experiments in future
works as well as explaining the decision path made during the implementation.

Structure

Generally, the augmentation experiments are structured into the same three levels as the baseline
experiments. Namely from top to bottom, experiment level, trials level and run level. Though, the
implementation of those levels differs from the one introduced for the baseline experiments.
For all selected augmentation techniques, an augmentation experiment encompasses a set of trials.
However, experiments are not only conducted for a distinct augmentation technique, but also for each
data set, the three selected models and the two training scenarios. So basically, an experiment Eaug

is run for each unique combination of augmentation technique A, data set D, model M and training
scenario S in a grid-search approach.
Eaug = (a ∈ A, d ∈ D, m ∈ M, s ∈ S)

In each experiment, a specific augmentation technique is evaluated. For this particular technique, a
single primary hyperparameter θA is tuned to limit the number of iterations. Therefore, the number of
trials within an experiment depends on the distinct values selected for the primary hyperparameter of
an augmentation technique (Number of trials = |θA|).
For the last level, the runs, the same idea is used as in the baseline experiments. This means that
depending on training scenario, the specific cross-validation is performed. The resulting structure of
the augmentation experiments is visualized in figure 3.5
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Figure 3.5: Augmentation Experiment Structure

Execution

To limit the number of trials executed within an experiment, only a single hyperparameter is evaluated
for each augmentation technique. Since some of the methods have multiple degrees of freedom, the
primary hyperparameter to be tuned must be determined.
All techniques consists of a probability paug with which a certain technique is applied to a sample.
Because paug is not a method specific parameter and rather describes by which amount the original
training set distribution should be extended, it is not considered as parameter of interest. Thus, paug

is set to 0.5 for all augmentation experiments of this work.
The remaining hyperparameter for Channels Dropout is pdrop, for FT Surrogate the phase noise mag-
nitude and for Smooth Time Mask the length and the position of a mask within a sample. In this
work, the length of the mask is used as the hyperparameter to be evaluated and the position is chosen
randomly.
To be able to observe the sensitivity of a technique to its evaluated hyperparameter, ten trials are con-
ducted for each method. Both Channels Dropout and FT Surrogate have a bounded hyperparameter
space by an interval between [0, 1]. Therefore, a step of 0.1 is applied starting by 0.1. For the Smooth

32



CHAPTER 3. METHODS 3.6. Experiments

Time Mask, a maximum length of two seconds is considered appropriate, as the length of the exper-
imental window is four seconds for the BNCI2014001 data set and 4.5 seconds for the BNCI2014004
data set. Starting with a length of 0.2 seconds and increasing in steps of 0.2, the maximum length of
the zero mask makes up about 50% of the input sample. A summary of the tuned hyperparameter for
each augmentation technique can be found in table 3.3.

Method Tuned Hyperparameter Other Hyperparameters

FT Surrogate Phase Noise Magnitude
Range(0, 1, step=0.1) Paug: 0.5

Channels Dropout Dropout Probability
Range(0, 1, step=0.1) Paug: 0.5

Smooth Time Mask Mask length (s)
Range(0, 2, step=0.2)

Paug: 0.5
Mask position: picked randomly

Table 3.3: Tuned Hyperparameter Space Augmentation Experiments

Results

The intention of the result visualisations is to show the relative change in accuracy when applying a
defined augmentation technique with a certain hyperparameter value. In more detail, for each selected
augmentation strategy a plot should be generated which displays the relative change in accuracy on
the Y-axis and the values of the hyperparameter on the X-axis. Because in the intra-subject setting the
augmentation technique gets validated for each subject, a box plot can be displayed to see how much
variance exists between different subjects. A box plot was chosen instead of error bars to get a sense
of the true underlying distribution of the result data points. Moreover, error bars rely on a Gaussian
distribution assumption, which can not be satisfied with the number of subjects offered by the used
data sets. Similar, a box plot can be displayed for the inter-subject training scenario due to the use of a
LOOCV over the training subjects. An example of a result plot for the Channels Dropout augmentation
technique is shown in figure 3.6

Figure 3.6: Channels Dropout Result Example
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Implementation

A contribution of this project is to build a data augmentation pipeline that can be flexibly applied to
different models, augmentation methods or data sets. The focus of this chapter is to describe the
technical details about the pipeline setup and should indicate what kind of adjustments to the pipeline
can be made to reproduce or even extend the experiments.

4.1 Libraries

First of all, Braindecode was used to implement the preprocessing steps, integrate the augmentation
strategies as well as defining the two CNNs of this project [36]. The implementation of the neural models
in Braindecode is done via Pytorch together with a Skortch wrapper. This allows the usage of all layers,
callbacks, data loaders and criterions provided by Pytorch [121;122]. The Skorch wrapper enables to use
Scikit-Learn methods along Pytorch and offers an aligned API [122;80]. Scikit-Learn itself was used to
implement the classical machine learning models [80].

4.2 Requirements

At the time of the project setup, Python version 3.9.x was required to be compatible with the de-
pendencies used in the project. The package preventing the project from using Python 3.10.x was
skortch [122]. However, Python 3.10.x support of the package was under active development by the
time of the project. All required dependencies can be found in the requirements.txt in the root folder
of the project. Additional information about the environment setup is given in the README.md file.
After running the pipelines, all resulting plots are stored in the project’s results folder. Beyond the
visual plots, the project depends on the platform Weights & Biases (WandB) for metrics and progress
logging [120]. However, it is not mandatory to use WandB to run the project and can rather be configured
in a dedicated configuration file. For security reasons, the credentials to connect to the WandB project
are stored in a separate .env file, which is not checked in to the version control system. The required
environment variables to successfully connect to WandB are also explained in the README.md file.
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4.3 Setup and Structure

The project is structured into four scripts, which are stored in the scripts folder of the project. First, the
main.py script which executes the baseline and the augmentation experiments. The script is structured
into different steps such as loading and preprocessing the data set, training and evaluating the model
or logging and storing the results. For each step different configurations can be applied which are
presented in section 4.5. Second, the dataset_exploration.py script which can be used to get a first
impression of a dedicated data set. On the one hand, it visualizes an example of each class within a
data set. On the other hand, it plots the distribution of the classes in a histogram to validate if classes
of a data set are balanced. The third script called augmentation_visualization.py can be used to
visualise the effects of the introduced augmentation techniques. Lastly, the evaluate_experiments.py
script validates the results obtained during the baseline and augmentation experiments by plotting the
desired graphs on the basis of the queried data from WandB.
All scripts allow a number of configurations to simplify the execution of different experiments and to
adapt certain diagrams to the respective needs. The configurations are stored in a tree of YAML files
in the config folder of the project. In the upcoming sections, the level of possible configuration is
presented as well as the effort required to extend the experiments and its visualisations.

4.4 Experiment Pipeline

The experiment pipeline, implemented in main.py, is divided into different steps and visualized in figure
4.1. A typical machine learning pipeline with data loading, preprocessing, training and evaluating was
set up. In addition to that, a second preprocessing step to create several windows from a single trial is
applied to increase data efficiency. Also the model needs to be initialised first to evaluate the model its
receptive field size, which is required to decide about the window stride during the window cropping.
With the received window data set, the defined split strategies can be applied to divide the data set into
a training, validation and test set. The classifier initialisation is only required for neural based models
of the pipeline. The instantiated Skorch classifier handles the training of the Pytorch based model such
that it can be used like an ordinary Scikit-Learn classifier. Moreover, training parameters such as batch
size or the number of epochs as well as the optimizer is configured in this step of the pipeline.
Before training, the augmentation techniques get initialised. While for the neural track the augmentation
methods are applied online during training, it is required for the basic track to apply them directly to
the training set beforehand.
After training, the model is used to predict the classes on the test set and the defined performance
metrics are computed as well as the plots generated. In the last step all metrics, plots and the meta
data created are stored on the WandB platform.
Two subsequent iterators around the pipeline are required to conduct the desired experiments. One to
tune a model’s hyperparameters in the baseline experiments or to validate an augmentation technique’s
primary hyperparameter during the augmentation experiments. A second is used to implement a cross-
validation-like structure depending on the training scenarios.
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Figure 4.1: Experiment Pipeline

4.5 Experiment Configuration

For both, the baseline and the augmentation experiments, the implemented pipeline allows a defined
set of configurations. This section aims to give a basic understanding on this configurations and how
they can be used to customise the experiments according to the needs. The config.yaml file within the
config folder is used as entry point to all experiments related configurations. All other configuration
files are then resolved in a tree like structure by the Hydra plug-in, such that eventually a configuration
dictionary can be access within the invoked function [118].
Generally, the pipeline supports all data sets offered by the MOABB API [116]. However, to use a
particular data set within the pipeline, some information is required, which is stored in the data set
configurations files in the /config/dataset folder. Currently, the project supports six motor imagery
data sets. Depending on the data set, a different split strategy is implemented. If no customised
split strategy to a certain data set is defined, the pipeline defaults to a fractional split of the subjects.
Additionally, it can be configured if an intra- or inter-subject training scenario should be applied for the
data set. To run the pipeline with a particular data set, the dataset key in the defaults section of
the config.yaml file can be set according to the data set name (referencing the YAML filename in the
/config/dataset folder).
During the preprocessing step of the pipeline, the project uses the proposed configurations by the
Braindecode library [36]. Despite, parameters like the range of the band pass filter or adjusting the offset
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of trial window can be set in the preprocessing configurations file. Compared to the examples in the
Braindecode library, the number of parameters required was reduced when it was possible to calculate
them using the information provided in the data set.
The pipeline supports four configurable models. A shallow and a deep CNN, a Support Vector Machine
and a Random Forest. Each model obtained a separate configuration file in the /config/model folder.
The main idea of the model configuration files is to set a defined number of hyperparameters for
the model. Moreover the pipeline differentiates between neural network based and classical machine
learning models. For neural based models, additional parameters for training and optimizing the model
such as batch size or learning rate can be set disparate configuration files (/config/training and
/config/optimizer).
In order to define the hyperparameter search space in a baseline experiment, a Optuna sweeper is
used [119]. With Optuna, for each hyperparameter a range or a choice of values can be defined. If this
two methods are not sufficient, also a custom strategy can be implemented. Additionally, a maximum
number of experiments and an optimizing direction of the returned metric (minimize / maximize) needs
to be set. The hyperparameter search space of the project can be set in the hydra/sweeper/params
section of the config.yaml file. To run a baseline experiment with a hydra multi run configuration, the
run_baseline_experiment.sh shell script can be executed.
Six augmentation techniques are implemented in the pipeline and can be switched on in the config/
augmentation configuration file. For each unique method, the values of all supported hyperparameters
can be set. In addition, the primary hyperparameter that is optimised during the augmentation ex-
periments can be configured together with its search space. Augmentation experiments can be run by
executing the run_augmentation_experiment.sh script.
The project supports two types of result visualizations. Either the results can be plotted as a box
plots or in favour of comparability to the work of Rommel et al. [27] they can be visualized as point
plots extended with error bars. Configurations to the plots such as the referring baseline experiment or
technique depended colours or labels can be set in the config/visualisation file. To create the result
diagrams, the name of the augmentation experiment must be set in the configuration file, followed by
the execution of the evaluate_experiments.py script. This because the visualisations depend on the
data stored on the WandB platform, which is identified by the name of the experiment.
Lastly, the configuration of the WandB integration can be adjusted. The files in config/wandb represent
the logging of two environments, one for development and one for conducting the experiments. This
separation is intended to prevent experimental and test data from being mixed on the WandB platform.
Furthermore, the WandB platform supports different messaging channels to inform about the state of
the running experiment. Therefore, if set up accordingly on the platform, messaging can be toggled
from within the configuration file.

4.6 Experiment Extension

If the configurations of the pipeline are not sufficient for the needs of the experiment, the pipeline can
to a certain extend be extended effortlessly. For each step of the pipeline there is a separate service
with atomic functions that are switched by the given configurations. This means that the most of
the components used by the pipeline can be extended by creating a new component and making that
available through a dedicated configuration file.
First, the pipeline can be expanded to support all the data sets available via the MOABB API. In
order to add a data set, only an additional configuration file in the /config/dataset folder needs to be
created according to the existing templates. If also a dedicated split strategy needs to implemented, a
named function can be added to the DatasetService class. Moreover, many utility functions to split
a data set by its hierarchical entities exist, which can be combined sequentially to get to the desired
result.
Because the pipeline is based on Pytorch [121], Scikit-Learn [80] and the Pytorch wrapper Skorch [122],
custom models based on both libraries are supported by the pipeline. A new model can be added by
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extending the ModelBuilder class by a new model and adding it’s hyperparameter configurations to a
new file in the /config/model folder.
Likewise to the models, the evaluated metrics can be extended effortlessly by adding a new method
to the WandBService class. Since the index and probability predictions of the classes for all data set
partitions are passed to the service, new metrics offered by different libraries can be plugged in easily.
Examples of metrics exists from Scikit-Learn [80], Pytorch [121] and Torchmetrics [123].
Finally and most importantly for the project, the pipeline can be extended to support all augmentation
techniques offered by the Braindecode library. In order to add a certain method, a new atomic generator
function, which instantiates the augmentation class, needs to be created in the AugmentationService
class. Similar to the existing examples, a new configuration file for the included technique can be
added to the config/augmentation/augmentation.yaml file. Custom augmentation techniques can be
implemented by extending the Transform class of the Braindecode library, which is basically a Pytorch
Module.

To sum up, the modular structure and the use of multiple prevalent libraries allows to extend the
pipeline extensively. Depending on the degree of customization required, a different abstraction level
of the libraries can be used to implement the desired strategies.
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Results

Numerous experiments were conducted according to the experiment plan attached in appendix A.2.2.
The aim of this chapter is to summarise the results of the baseline and then those of the augmentation
experiments.

5.1 Baseline Experiments Results

The result visualisation of the baseline experiments is divided into the two main applied train scenarios:
intra- and inter-subject. For each scenario, the best result, based on the average of the cross-validated
runs, is presented for all models and data sets. In addition to the number-based metrics, the created
performance plots are visualised exemplarily.

5.1.1 Intra-Subject

With the four classes of the BNCI2014001 data set, the classification task is significantly more difficult
for the model than with the two classes of the BNCI2014004 data set.
In order to assess the performance of the models comprehensively, the average of all performance metrics
were calculated for each trial. For the intra-subject scenario this means the average over the subjects
of a data set. The results with the highest average achieved by the different models are listed in Table
5.1.
Surprisingly, even with the proposed hyperparameters of Schirrmeister et al. [36], the deep CNN was not
able to exceed the performance of the shallow CNN. Rather more predictably, the SVM was not able
to significantly surpass the random chance of 25 % for the four class data set and the 50 % boundary
on the two class data set. Because of the small number of subjects in the data sets (|subjects| < 11),
even with the use of the t-distribution, a confidence interval cannot be used for an accurate conclusion.
Therefore, the minimum and the maximum value of the test accuracy are listed in the performance table
in order to assess the variance between subjects. By consulting the table, an expected high inter-subject
variability can be observed. Despite the lower average performance achieved by the deep CNN, it shows
a slightly smaller variance in its results. The variance achieved by the SVM is questionable and origins
more likely on the marginal performance on all subjects.
A second characteristic of the results is the high amount of overfitting when using neural based ap-
proaches. The fact that even the shallow model is able to fit the test data perfectly contradicts slightly
the assumption of EEG data as very complex high dimensional data. However, the high bias value
also implies that with additional data of the true underlying distribution, the variance could further be
reduced. Also, the high accuracy attained for certain subjects, in combination with the observation of
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the converging learning curves, it can be concluded that the model is able to learn how to discriminate
between classes for this type of data. A sample learning curve can be seen in appendix A.2.4.
A first impression about the results could be acquired by considering the number-based performance
metrics. In order to get more in-depth insights, three representative subjects achieved by the shallow
CNN on the BNCI2014001 data set are visualized in figure 5.1. Additionally, the results obtained on
the BNCI2014004 data set can be viewed in figure A.3 of the appendix. The figures show that the
performance of the models highly depends on the different subject. Also the classes on which the
model has more difficulty or shows the most confusion vary between subjects. This means that for
some subjects there exists most confusion between left and right hand and for others among right
hand and feet. Furthermore, these characteristics of the results can be determined independently of the
underlying data set or the model used. Therefore, the results highlight the problem of high inter-subject
variability when using EEG data for classification tasks as described in the literature.

Model Median Acc. Avg. Acc. Min. - Max. Test Acc. Test F1-Score

Shallow CNN
Test: 72.92 %
Valid: 79.69 %
Train: 100.00 %

Test: 68.81 %
Valid: 71.99 %
Train: 100.00 %

[40.10, 88.02] % 67.95 %

Deep CNN
Test: 67.36 %
Valid: 73.96 %
Train: 100.00 %

Test: 57.94 %
Valid: 60.16 %
Train: 99.91 %

[41.67, 77.08] % 57.05 %

SVM
Test: 28.13 %
Valid: 26.82 %
Train: 25.52 %

Test: 26.91 %
Valid: 26.42 %
Train: 25.21 %

[18.75, 30.73] % 25.26 %

Table 5.1: BNCI2014001 Baseline Intra-Subject Experiments Results

Model Median Acc. Avg. Acc. Min. - Max. Test Acc. Test F1-Score

Shallow CNN
Test: 83.75 %
Valid: 83.13 %
Train: 91.00 %

Test: 79.10 %
Valid: 79.17 %
Train: 89.29 %

[51.56, 94.37] % 78.92 %

Deep CNN
Test: 84.38 %
Valid: 86.25 %
Train: 100.00 %

Test: 79.44 %
Valid: 81.39 %
Train: 100.00 %

[48.75, 94.69] % 79.32 %

SVM
Test: 53.13 %
Valid: 50.94 %
Train: 36.88 %

Test: 53.40 %
Valid: 51.55 %
Train: 43.26 %

[50.94, 55.94] % 52.62 %

Table 5.2: BNCI2014004 Baseline Intra-Subject Experiments Results
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Figure 5.1: Intra-Subject Baseline Experiment Performance Evaluation Shallow CNN on BNCI2014001
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5.1.2 Inter-Subject

Similar to the intra-subject experiments, it is the aim of this section to present the results of the inter-
subject experiments likewise, which are listed in table 5.3. In contrast to the intra-subject experiments,
the average performance per trail was calculated not based on the individual subjects, rather by using
the training subjects with a LOOCV strategy. Alike, minimum and maximum performance values are
listed based on the different LOOCV runs of a trial and not by the unique subjects as in the intra-subject
scenario.
As the amount of data and difficulty of the task increased, the average performance for the BNCI2014001
data set decreased significantly. However, it is important to note that due to the limited number of
subjects in the BNCI2014001 data set, only one static subject is used as test data set. To reduce the
decline in performance to this fact alone would not be sufficient, since not only the test accuracy but
also the cross-validated validation accuracy decreased, although not as drastically. Furthermore, a first
difference between the data sets can be observed. The drop in performance did not occur under the
application of the BNCI2014004 data set and could rather be improved. Here the reason is clearly
referable to a beneficial subject used as test set. A may more realistic value can be considered with
the cross-validated validation accuracy. Nevertheless, for the BNCI201004 data set, the performance is
almost at the same level as in the intra-subject training scenario.
A further notable difference to the intra-subject setting can be observed by considering the overfitting
capabilities of the models. While the deep CNN still overfits strongly on the training set, this is no
longer the case with the shallow CNN and the larger amount of data. Especially for the BNCI2014004
data set, the bias error decreased significantly. But still, despite the ability to overfit, the shallow CNN
still achieves a better validation and test accuracy for both data sets.
Interestingly, as the amount of data increased, the SVM was able to produce better results than in the
intra-subject scenario. Also, the balanced data sets do not lead to a notable difference between the
test accuracy and the weighted F1-Score. Finally, the difference between the minimum and maximum
values of the runs has decreased considerably. This shows that the test accuracy is not expected to
change drastically when removing a specific subject from the training set unless some of the remaining
subjects are still valuable.
Beside the effect on classification performance, the increase in training data has a strong influence on
the running time of the training. While in an intra-subject scenario a run took about one minute for the
shallow CNN, 1.5 minutes for the deep CNN and 15 seconds for the SVM, the required time increased
to six minutes for the shallow CNN, 15 minutes for the deep CNN and three hours for the SVM. Because
the inability of the SVM to process the data within a time amount respecting the scope of this project,
the SVM is only evaluated further for the BNCI2014001 data set when using an inter-subject scenario.
Approaches to tackle this shortcomings of the SVM by applying additional preprocessing to the input
are discussed in chapter 6.
By the comparison of different runs of the BNCI2014001 data set and the application of the shallow
CNN in figure 5.2 more details can be explored. Additional examples on the BNCI2014004 data set
can be found in the appendix in figure A.4. In the LOOCV between subjects as a validation sets,
again a high intra-subject variability is observed. When considering the validation ROC curve of the
run with the highest accuracy on the BNCI2014001 data set, the model could merely discriminate
between the different classes, whereas it in other runs achieved a reasonable value for the AUC metric.
Since the same subject was used as test set, it is evident that the model has difficulties with the same
classes over all runs, namely feet and tongue. Throughout testing, the model clearly overrated the right
hand class even with a balanced data set. This is a clear evidence, that the model is not capable to
distinguish between classes based on the appropriate characteristics of the features for this particular
subject. However, this outcomes gets contrasted by the results on the BNCI2014004 data set where the
model achieved similar AUC values for both classes. Also, the worst run shows that multiple valuable
subjects need to be present in training set to achieve an accuracy level that is significantly better than
random chance.
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Model Median Acc. Avg. Acc. Min. - Max. Test Acc. Test F1-Score

Shallow CNN
Test: 37.85 %
Valid: 35.42 %
Train: 69.70 %

Test: 38.32 %
Valid: 42.96 %
Train: 69.70 %

[35.85, 41.32] % 35.08 %

Deep CNN
Test: 37.50 %
Valid: 40.80 %
Train: 100.00 %

Test: 37.71 %
Valid: 46.18 %
Train: 99.97 %

[34.84, 41.90] % 34.46 %

SVM
Test: 31.60 %
Valid: 30.90 %
Train: 99.65 %

Test: 31.55 %
Valid: 30.90 %
Train: 99.63 %

[30.47, 33.07] % 28.13 %

Table 5.3: BNCI2014001 Baseline Inter-Subject Experiments Results

Model Median Acc. Avg. Acc. Min. - Max. Test Acc. Test F1-Score

Shallow CNN
Test: 90.41 %
Valid: 74.46 %
Train: 74.72 %

Test: 90.30 %
Valid: 70.24 %
Train: 75.33 %

[88.72, 91.49] % 90.25 %

Deep CNN
Test: 86.69 %
Valid: 71.32 %
Train: 97.97 %

Test: 87.10 %
Valid: 67.61 %
Train: 95.97 %

[84.19, 89.76] % 91.15 %

Table 5.4: BNCI2014004 Baseline Inter-Subject Experiments Results
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Figure 5.2: Inter-Subject Baseline Experiment Performance Evaluation Shallow CNN on BNCI2014001
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5.2 Augmentation Experiments

The results of the augmentation experiments are divided into the three different investigated augmen-
tation strategies. For each strategy, the results are organised by the applied training scenario. Then for
both scenarios, a grid with the resulted graphs is displayed, in which the X-Axis describes the models
used and the Y-Axis distinguishes between the data sets.

5.2.1 Channels Dropout

As first augmentation technique, Channels Dropout was analysed. The resulting two grids for the intra
and inter-subject training scenario are visualized in figure 5.3.
For both training scenarios, the average and the median performance did not increase significantly,
regardless of the data set. The best effect of Channels Dropout can be observed for the BNCI2014004
data set in an intra-subject scenario, where a tendency to reduce variance exists for the neural-based
models. In addition, the model is more sensitive to hyperparameter changes of pdrop for larger data sets
in an inter-subject scenario, as only small variations of accuracy can be detected for the intra-subject
scenarios.
The inter-subject variability can clearly be observed for the intra-subject experiments. In general, the
technique cannot drastically change the performance order of the subjects. This means that if the
subjects are divided into three clusters, it is not likely that the application of Channels Dropout is
changing the members of this clusters. However, for the deep CNN on the BNCI2014004 data set, one
can see that there are subjects like number nine that benefit more from CD than others. There is also
a tendency to identify some difficult subjects, such as number two, who lead to poorer results across
models when using CD.
By comparing the results on the WandB platform, applying the Channels Dropout method reduced the
variance by simultaneously also decreasing the general classification performance in most cases. Also,
a carried out variance analysis shows a high negative Spearman and Pearson correlation of a reducing
variance when increasing pdrop. An example for such a variance analysis for Channels Dropout applied
on the BCNI2014004 data set can be found in appendix A.2.5. The reason why the regularization
effect of Channels Dropout is not directly visible is that it can only be observed for subjects on which
the model discriminated reasonably also without applying the technique. For challenging subjects, the
use of Channels Dropout tends to lead to a deterioration of the results. Eventually, even if Channels
Dropout acts like a regularization technique, the amount of overfitting remains considerably high.
To sum up, Channels Dropout has a larger effect on more extensive data sets. A model can benefit from
the method by making the model less dependent for specific subjects. Nevertheless, its effect depends
on the prevalent data set. This also leads to the conclusion that under the applied split strategies, the
results reported by Rommel et al. could not be reproduced for the Channels Dropout technique and
transferred to other data sets [27].
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(a) Results Channels Dropout | Intra Subject

(b) Results Channels Dropout | Inter-Subject

Figure 5.3: Results Channels Dropout

5.2.2 FT Surrogate

The application of FT Surrogate shows a different results in comparison to Channels Dropout. As shown
in figure 5.4, FT Surrogate has a positive effect in most of the intra-subject experiments. By using the
deep CNN in an intra-subject scenario, the highest accuracy increase of 7.6% could be achieved.
If the subjects are clustered according to the level of relative accuracy increase, the higher the value for
phase noise magnitude gets, the lower the variance within this clusters becomes. This means that the
between subject variance could not be narrowed over the entire population of subjects, but for those in
a certain performance range. Consequently, the average does not change significantly and the median
can even drop slightly. However, it could also lead to a more consistent result in a specific setting.
A different result shows the application of FT Surrogate in an inter-subject scenario. Only using the
deep CNN on the BNCI2014001 data set resulted in a positive change in accuracy. There is also no
significant positive effect on the variance perceptible if exchanging one subject during training. However,
challenging or well discriminable subjects can clearly be identified for both neural based models, which
could allow further analyses on what makes them difficult.
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When considering the results to assess overfitting, an akin situation to the Channels Dropout technique
can be observed. Classification error increases while variance decreases slightly. Also when assessing
the conducted variance analysis, there is a clear negative correlation between variance and an increasing
phase noise magnitude value. But even if the generalisation error drops and the method could be
applied as a regularisation technique, there is often a shift in performance on both data sets, making
the positive overfitting reduction redundant.
To conclude, FT Surrogate also does not show a general trend that its use is likely to have a positive
effect when using a particular type of model or regardless of the data set.

(a) Results FT Surrogate | Intra-Subject

(b) Results FT Surrogate | Inter-Subject

Figure 5.4: Results FT Surrogate
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5.2.3 Smooth Time Mask

The last augmentation technique considered was the Smooth Time Mask (STM) method. The results
obtained are visualised in figure 5.5. In comparison with the other techniques evaluated, it achieves the
best overall performance increases. Even if the raise in performance was often marginal, the technique
was able to achieve an improvement in most cases. Together with the results of Rommel et al. [111],
STM can therefore most likely be seen as suitable augmentation method for motor imagery BCI systems
based on EEG data, which performs for different models and irrespective the data set. Moreover, the
highest relative accuracy increase of 8.56% could be achieved when using STM.
If the training scenarios and data sets are considered in more detail, the results show only a moderate
sensitivity to the evaluated hyperparameter changes in an intra-subject scenario. A clear evidence that
the technique is able to reduce the overall inter-subject variability cannot be observed. There is more
likely a tendency that the discrimination for challenging subjects gets even more difficult when using
the deep CNN. But even if the average performance could not be improved considerably, the deep
CNN shows that it is able to improve the median performance for both data sets. This because of the
inter-subject variability reduction between subjects beyond the baseline average. This concludes that
STM is more effective on samples with valid information for the model rather than on those which
confuse the model. Because STM only removes information from the original signal, this effect is also
reasoned.
Based on an inter-subject training scenario, using STM is more sensitive to hyperparameter changes.
But beside the considerable performance increase on the BNCI2014001 data set, in this scenario, no
consistent conclusion can be drawn that the application of the method results in a positive effect
independent of the data set or model family used. However, the method can help reduce dependence
on a particular subject during training, as the variance for certain hyperparameter value ranges can be
reduced on a scenario-specific basis. This can be helpful even if the average performance drops slightly
to get a more robust evaluation about the actual performance of the model.
Regarding overfitting, the method shows a slightly different outcome to the methods analysed in the
previous sections. Whereas it could reduce overfitting in both training scenario by using the shallow
CNN, no reduction of variance could be observed for the deep CNN as the bias error remained almost
zero.
To sum up, Smooth Time Mask is a promising augmentation technique for motor imagery EEG data sets.
The successful application requires a limited amount of hyperparameter tuning but its transferability to
different data sets depends on the applied training scenario.
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(a) Results Smooth Time Mask | Intra-Subject

(b) Results Smooth Time Mask | Inter-Subject

Figure 5.5: Results Smooth Time Mask
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5.3 Conclusion

The baseline experiments showed that motor imagery classification based on EEG data remains a
challenging task even with the high capacity of convolutional neural networks. The most influential
aspect on a model’s performance is the subject specific data used for training or during evaluation.
Independent of the applied training scenario, significant differences could be observed when using
specific subjects for training or evaluation of the model performance. Therefore, the conducted baseline
experiments highlight, that the high inter-subject variability is one of the major challenge of EEG
classification tasks. Additionally, the experiments showed that challenging subjects can be identified
regardless the applied models and augmentation strategies.
The high capacity of convolutional neural networks lead to a high overfitting on the training data. Even
if EEG data is high dimensional, the sparsity in data, especially in an intra-subject setting, resulted in
total overfitting for both neural based models during the baseline experiments.
Between the two data sets investigated, a fairly different baseline performance result was obtained. One
reason is the binary versus multi-class setting and another the static, preliminary separated test set.
Depending on the selected test subject, performance in an inter-subject setting can vary significantly.
However, when it became apparent that the test subject was challenging for the BNCI2014001 data
set, it was decided not to replace it and instead to investigate the ability of augmentation techniques
to compensate for this subject.
By assessing the baseline performance of the different models evaluated in this project, the results show
that both CNN can achieve similar levels of accuracy if the same amount of hyperparameter tuning
is done beforehand. In most of the cases, a even slightly better result could be obtained when using
the shallow CNN. Opposed to neural based approaches, the use of a SVM without further feature
engineering on the input can not successfully be applied on EEG data, as it only marginally exceeded
the random classification level defined by 1

# of classes .
Extensive experiments with three models as well as two data sets and training scenarios were conducted
to assess the general applicability of three selected augmentation techniques. The effect of the applied
augmentation strategies on the average cross validated accuracy by subjects in an intra-subject setting
is often marginal with a few exceptions. However, with the deep CNN there is evidence that the median
accuracy could be increase in most cases. This shows that the techniques used have a positive effect
on subjects where the model is able to reasonably distinguish between classes and a negative effect on
those that are challenging. Furthermore, the model was able to reduce the variability between subjects
above a certain performance level rather than between all subjects.
In contrast, the techniques applied can have a more sensitive impact on intra-subject experiment results.
Both in the positive and negative direction. None of the techniques could be identified to increase the
performance irrespective of the data set or independent of the model selected. This leads to the
conclusion that with EEG data, augmentation techniques are dependent on the scenario they are used
in and a task-specific selection process must be carried out when using the considered techniques in
a motor imagery classification task. Another interesting characteristic of all the techniques evaluated
is that the results are not very sensitive to a change of the evaluated hyperparameter. It follows that
larger steps can be taken in tuning the hyperparameters to find a suitable parameter value for the task
to be solved.
Considering the individual methods, Smooth Time Mask followed by FT Surrogate achieved the most
promising results regarding classification performance increase. However, Channels Dropout shows the
highest tendency of having the ability to make the model less dependent on specific subjects in an
inter-subject setting. This effect can be seen in the lower dispersion of results when using the method.
Although a significant performance gain of 7 − 8% could be achieved with Smooth Time Mask or FT
Surrogate in a given setting, the high performance gains of Rommel et al. [27] could not be reproduced
with the applied training scenarios, even if the same model and the same suggested parameters by
Schirrmeister et al. [36] were used for the single setting applied in the paper.
The problem of overfitting with the neural base models could be slightly mitigated with Channels
Dropout or FT Surrogate in all the different settings and for both data sets. With Smooth Time Mask
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this effect could only be observed with the use of the shallow CNN. Also, even if the variance could be
reduced, mostly a shift of the entire performance result can be perceived. In other words, bias error
increased more than the gain in test accuracy but still generalization error was reduced moderately.
To sum up, the desired outcome of finding an augmentation technique which can be applied beneficial
on different neural based architectures or independent of the motor imagery data set can not be
confirmed by the amount of experiments conducted in this project. Nevertheless, the results show
that performance gains can be achieved more likely by certain techniques among data sets but with
differently tuned models. In addition, the project has shown that difficult subjects can be identified
regardless of the used models. The highest relative accuracy increase could be attained by using the
Smooth Time Mask method and the deep CNN. There is also a tendency for the deeper CNN to be more
sensitive to the application of an augmentation technique than a shallow one. Finally, it was possible to
investigate that Channels Dropout and FT Surrogate are able to reduce intra-subject variability within
a given performance level and make the model less dependent on specific subjects.
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Chapter 6

Discussion and Future Work

The chapter is divided into two sections. First the results are discussed and extensions to the existing
solutions are proposed while the reflection. Secondly, possible future work should be prioritised.

6.1 Result Discussion

The novelty of the work was to extensively conduct experiments with specifically selected set of augmen-
tation strategies in different settings of motor imagery classification tasks. Often a dedicated method is
tuned to its best in a single setting predefined by a model, a data set and a described training scenario.
However, the main focus of this project was to evaluate how general and with what tuning effort a set
of techniques can be applied to different motor imagery classification tasks, and to enable conclusions
to be drawn about limitations and future work that needs to be done to apply the techniques more
effectively.
One of the key findings across all settings tested was that the successful application of an augmentation
technique depends on the quality of the input data provided by the subjects of a data set. When
considering the results, often only the median value could be increased whereas the average stayed at
roughly the same level. A focus on the individual subjects in the point plots shows that the performance
on a subject can be improved with the application of an augmentation technique when a certain level of
classification performance could be attained for that subject. Additionally, in the inter-subject scenario
with a fixed test data set, the performance of the model heavily depends on the subjects selected in
the test set. This makes the inter-subject variability also in this work one of the main limitations to
achieve better average performance results. A key assumption in machine learning is that the data in the
training and test set origin from the same feature space and obey the same probability distribution [124].
This assumption can not be fully met because of the difference between the individual subjects [124].
One method to address this issue is to calibrate the recorded sessions for a long time. However, this
is often not feasible due to time and resource constraints and would need a lot of cooperation by the
subjects [125;97;126]. Zanini et al. [127] proposed a Riemannian alignment (RA) of the covariance matrices
for each trial of a subject to centre them according to the reference covariance matrix in the Riemannian
space. Contrary, He and Wu [128] suggested and Euclidean alignment (EA) of the trials which is not
dependent on a classifier which operates in the Riemannian space and rather acts on the generated
covariance matrices directly. Moreover, EA showed in experiments to be several times faster and only
requires unlabelled EEG trials [128;127;124]. Hence, it would be an interesting experiment to apply EA
prior to the conducted investigations of this work.
The variability between subjects can also have an effect on the results of the inter-subject experiments.
The scenario was implemented taking into account Ng [68] who stated that a test set should be predefined
and separated until a conclusive evaluation and should not be investigated in the meanwhile. For this
type of EEG experiments this approach could be misleading. Especially if the number of subjects used is
small. Still, in a real world application the model should perform approximately equally on all subjects,
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but for the experiments of this project, the results in the inter-subject scenario could be misleading
with respect to the level of accuracy attained. Therefore, an extension to add a second LOOCV loop
that uses each subject as test set independently is proposed. This should give a better insight into the
actual result distribution of the subjects.
One of the main advantages of using convolutional neural networks, is that they are able to perform
end-to-end learning and do not rely on extensive feature extraction, but learn the features themselves.
Therefore only limited preprocessing was applied before training the model. The results showed that
a direct comparison between neural based approaches and classical machine learning methods diverges
drastically in the performance levels reached. One the one hand, using a SVM classifier directly on the
time domain only was able to marginally surpass the random level of guessing. On the other hand, the
processing time increased immensely with the increasing data volume in an inter-subject scenario. In
recent years, several EEG signal feature extraction methods have been introduced [129]. One of the most
popular algorithm family to extract features for motor imagery classification tasks is Common Spatial
Patterns (CSP) or one of its variants like Filter Bank Common Spatial Patterns (FBCSP) [129;130;93].
CSP is mainly used to find spatial filters that maximise the variance between the classes of a data
set [131]. Although the frequency domain is more important for MI classification, the time domain
may contain additional information, especially in a multi-class environment. Therefore, instead of a
fast Fourier transform (FFT) or a short-time Fourier transform (STFT), the application of a wavelet
transform (WT) would be more suitable for a non-stationary signal such as EEG [132;133]. Beside the
manifold of combinations between the mentioned methods, in recent papers, experiments to combine
WT with dimensionality reduction algorithms such as Principal Component Analysis or Autoencoders
to generate more dense representations of the features were performed [92;134;135]. Finally, for future
work, it would be especially insightful to apply a WT based method additionally to the preprocessing
steps conducted in the current pipeline.
The claim of Channels Dropout to act as a valuable regularization method can not be entirely confirmed
for the experiments of this work. Although there is clear evidence of a correlation between an increasing
pdrop probability and a decreasing variance, the overall accuracy often could not be raised notably. And
also the extent of decrease in variance depends strongly on the subject of investigation. Moreover, in
comparison to a state without using CD, there are several subjects on which the variance rose when
using only a small pdrop. However, while increasing pdrop for the same subjects, the variance declined
gradually to a lower level than originally without using CD. This results in that Channels Dropout in
an intra-subject setting needs to be selected carefully but eventually is able reduce overfitting. Luo et
al. [136] propose to use Channels Dropout not by setting a certain channel to zero, but rather using the
average of all other channel as the value of the replaced channel. Additionally, Luo et al. [136] suggest
not only to apply the technique during training, but also to transform the test set by this method. This
leads to additional two strategies to investigate further on the Channels Dropout technique.
The positive result of the deep CNN on the BNCI2014001 data set when using FT Surrogate as
augmentation technique shows that at least for some motor imagery data sets, important information
lies in the frequency domain. Despite the average on the BNCI2014004 data set could not be improved,
the median performance could be raised with both split strategies. Moreover, this proves that FT
Surrogate can be applied successfully beyond the original sleep staging task for which it was invented.
The fact that the deep CNN is able to benefit more from FT Surrogate could be an indication that later,
more high level filter are responsible to extract valuable features in the frequency domain. Strategies
to validate this intuition could be visualising the filter outputs in the frequency domain like in the work
of Nouri and Azizi [137] or comparing the filter outputs with some handcrafted filters to contrast the
outputs between different layers of the CNN as suggested by Tsinalis et al. [138].
The promising outcomes of Smooth Time Mask as a time-domain-based augmentation have shown
that the technique is able to reduce the model’s dependence on the time domain. The time domain
should also not be the primary focus of a model when applied to an MI data set consisting of subjects
imagining body movements in a repetitive manner. Hence, time masking could force the model to focus
more on the frequency domain and make the model time invariant. This intuition gets backed by the
findings of the last paragraph that a deeper model is more able to extract frequency domain specific
features and that the shallow network is more dependent on the time domain. Secondly, the hypothesis
gets also support by the conclusion that bias error could not be reduced when applying STM with the

53



6.2. Future Work CHAPTER 6. DISCUSSION AND FUTURE WORK

deep CNN because it is still able to completely overfit on the frequency domain. One approach to test
this hypothesis in a future work would be to compare and visualise the extracted features after applying
the trained filters of a deep CNN with those of a shallow one [137;138]. Ultimately, a conclusion could
be drawn if deeper CNN are more able to extract frequency domain specific features and consequently
deeper models should be used when applying the Smooth Time Mask augmentation technique.
In comparison to the visualization approaches used by Rommel et al. [27], the box plots in combination
with a point plot used to evaluate the effect of the applied augmentation techniques in this work do
not depend on the assumption of Gaussian distributed results. Especially in an intra-subject setting,
this method gave an intuition over the real distribution of the results and showed, how a certain
augmentation technique affects the result distribution over the different subjects. Additionally, it has
shown that the average is less expressive metric when assessing an augmentation technique in an intra-
subject scenario with a small number of subjects and rather the median should be considered. This
stems from the observation that qualitative subjects often profit more from an augmentation, while
the data for difficult subjects gets even more challenging for the models to discriminate on. In a
future work, an additional method to visualise the effects of a certain augmentation techniques, or to
check its validity, is the use of topographical maps [113;28]. Especially for methods which effect the
spatial domain like Channels Dropout. The maps could be used to investigate further on inter-subject
variabilities or to find a reason why certain subjects are more difficult for the model. In the field of data
augmentation, however, topographic maps are mainly used in the generation of own synthetic data
with generative models such as Variational Autoencoders (VAE) or Generative Adversarial Networks
(GAN) [28;139;140;141].

6.2 Future Work

This section will prioritise and summarise possible future work that has been taken up from the dis-
cussions in this work. As a first proposed work package, a second LOOCV loop should be added for
the inter-subject experiments, so that each subject builds the test set once. To address the variability
between subjects, then an Euclidean alignment in the preprocessing step is proposed. Furthermore, addi-
tional feature extraction methods need to be integrated during preprocessing for the SVM or traditional
machine learning models in general. Namely, it is suggested to implement a feature extraction based on
the wavelet transform, as it is able to retain information of the time as well as for the frequency domain
and is also more suitable for non-stationary processes than methods based on the Fourier transform.
With second priority the experiments should be even more expanded. This encompasses to perform the
experiments on a third data set to obtain a more confident statement of the trends observed. Because
the deep CNN still has limited capacity by recent standards, an extension of the experiments with
an additional model is advised, which further contrasts the results of the shallow CNN. For instance,
promising results regarding inter-subject transferability could be achieved with inception based models
like proposed in the work of Santamarìa et al. [91]. Also in the second work package, it is advised to
generate additional visualisations to evaluate the assessed techniques even further. Firstly, topographic
maps can be added to assess the validity of the augmentation techniques applied. Secondly, the EEG
signal could be visualised after applying the convolutional filters to assess on which feature characteristics
the model focuses on and to find an explanation for what distinguishes the subjects with good model
performance from those with poor model performance.
Finally, in a last package, it is proposed to generate own synthetic data. As introduced in the discussion,
there are existing papers which use VAE or GAN for synthetic data generation, however, often for
emotion detection classification tasks. Nevertheless, the methods and models applied would need to
be selected carefully to not overlap with existing works. Also, when considering the relative increase
in accuracy in the referenced papers [28;139;140;141], often only comparable improvements of 1-6% could
be achieved as with transformation-based methods. Although such a direct comparison cannot be
made and should be considered with caution, it can still give a sense of what to expected. Finally, it
could also mean that there is still room for improvement when it comes to synthetically generated data
augmentation.
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CNN / ConvNet Convolutional Neural Network
CSP Common Spatial Patterns
CV Cross Validation
DL Deep Learning
EA Euclidean Alignment
EEG Electroencephalography / Electroencephalogram
FB Filter Bank
FBCSP Filter Bank Common Spatial Patterns
FFT Fast Fourier Transform
FPR False Positive Rate
FT Fourier Transform
FTS / FT Surrogate Fourier Transform Surrogate
GAN Generative Adversarial Network
HSVM Hierarchical Support Vector Machine
KNN K-Nearest Neighbors
LDA Linear Discriminant Analysis
LOOCV Leave One Out Cross Validation
MEG Magnetoencephalography
MI Motor Imagery
ML Machine Learning
MLP Multilayer Perceptron
PSD Power Spectral Density
PSO Particle Swarm Optimization
RA Riemannian Alignment
RF Random Forest
ROC Receiver Operating Characteristic
STFT Short Time Fourier Transform
STIM Stimulus
STM Smooth Time Mask
SVM Support Vector Machine
TPR True Positive Rate
VAE Variational Autoencoder
WandB Weights & Biases
WT Wavelet Transform
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A.1 Data Set Comparison

Figure A.1: Data Set Comparison
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A.2 Experiments

A.2.1 Preprocessing Hyperparameter Configuration

In table A.1 the hyperparameters used in the preprocessing step are visualised in favour of reproducibility.
The names of the parameters are related to the implementation in Braindecode [36].

Preprocessing Step Function Name Hyperparameter Configuration

Channel Type Selection pick_types
eeg: True
meg: False
stim: False

Scaling scale scale_factor: 1e6
apply_on_array: True

Bandpass Filter filter l_freq: 4 Hz
h_freq: 38 Hz

Standardisation exponential_moving_standardize factor_new: 1e-3
init_block_size: Data set window size

Create Windows create_windows_from_events

trial_start_offset_samples: -0.5s
trial_stop_offset_samples: 0
window_size_samples: Data set window size
window_stride_samples: calculated
n predictions per input depending
on model output shape
drop_last_window: False

Table A.1: Preprocessing Hyperparameter Configuration
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A.2.2 Experiments Plan

Figure A.2: Experiment Plan
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A.2.3 Baseline Experiment Evaluation

Figure A.3: Intra-Subject Baseline Experiment Performance Evaluation Shallow CNN on BNCI2014004
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Figure A.4: Inter-Subject Baseline Experiment Performance Evaluation Shallow CNN on BNCI2014004

A.2.4 Learning Curves

Figure A.5: Learning Curves | Shallow CNN | BNCI2014001 | Intra-Subject | Baseline
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A.2.5 Variance Analysis

An example of a conducted variance analysis for Channels Dropout applied on the BNCI2014004 data
set in an intra-subject training scenario using the shallow CNN.

Variance plot

Figure A.6 shows a scatter plot with the variance calculated by train accuracy − test accuracy on
the Y-axis and the hyperparameter pdrop on the X-axis. The colour is set dependent on the distinct
subject.

Figure A.6: Variance Plot | Channels Dropout | Shallow CNN | BNCI2014004 | Intra-Subject
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Box plot

Figure A.7 shows subject-specific box plots to examine the distribution of variance reduction between
subjects when increasing pdrop.

Figure A.7: Combined Scatter Plot | Channels Dropout | Shallow CNN | BNCI2014004 | Intra-Subject
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Subject Specific Variance Plot

Figure A.8 shows the impact on variance when increasing the hyperparameter pdrop for each subject in
the BNCI2014004 data set.

Figure A.8: Subject Specific Variance Plots | Channels Dropout | Shallow CNN | BNCI2014004 | Intra-
Subject

Correlation

Figure A.9 shows the correlation of the variance to the hyperparameter pdrop. In addition, a box plot
is generated to see the distribution of the correlations between the subjects.

Figure A.9: Correlation | Channels Dropout | Shallow CNN | BNCI2014004 | Intra-Subject
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A.3 Project Management

Figure A.10 shows the used project plan of this work.

Figure A.10: Project Plan
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